Câu hỏi:

06/05/2025 93 Lưu

Cặp số \(\left( {x;\,\,y} \right)\) nào sau đây là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 5\\2x + 3y = - 1\end{array} \right.?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Sử dụng máy tính cầm tay, ta giải được hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 5\\2x + 3y = - 1\end{array} \right.\) có nghiệm là \(\left( {1;\,\, - 1} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Diện tích hình quạt tròn bán kính 30 cm, cung \(120^\circ \) là: \({S_{hq}} = \frac{{\pi \cdot {{30}^2} \cdot 120}}{{360}} = 300\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Vậy tổng diện tích các miếng bìa bạn Lan đã dùng là: \(4 \cdot {S_{hq}} = 4 \cdot 300\pi = 1200\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

n (ảnh 1) 

Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore, ta có: \(B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100.\)

Suy ra \(BC = 10{\rm{\;(cm)}}{\rm{.}}\)

\(\Delta ABC\) vuông tại \(A\) nên đường tròn ngoại tiếp tam giác có tâm là trung điểm của cạnh huyền, bán kính là \(\frac{{BC}}{2} = \frac{{10}}{2} = 5{\rm{\;(cm)}}{\rm{.}}\)

Vậy độ dài đường tròn ngoại tiếp \(\Delta ABC\) vuông tại \(A\) là: \(2\pi \cdot 5 = 10\pi {\rm{\;(cm)}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP