Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = –3x + 1 và parabol (P): y = mx2 (với m là tham số và m ≠ 0). Có bao nhiêu giá trị nguyên của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt cùng nằm về một phía đối với trục tung?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
mx2 = –3x + 1 hay mx2 + 3x – 1 = 0. (*)
Phương trình (*) có ∆ = 32 – 4.m.(–1) = 9 + 4m.
Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt cùng nằm về một phía đối với trục tung thì phương trình (*) phải có hai nghiệm phân biệt x1, x2 cùng dấu, tức là \(\left\{ \begin{array}{l}\Delta > 0\\{x_1}{x_2} > 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}9 + 4m > 0\\\frac{{ - 1}}{m} > 0\end{array} \right.,\) suy ra \(\left\{ \begin{array}{l}m > - \frac{9}{4}\\m < 0\end{array} \right.\) do đó \( - \frac{9}{4} < m < 0.\)
Kết hợp điều kiện m ≠ 0, ta có \( - \frac{9}{4} < m < 0.\)
Mà m là số nguyên nên ta có m ∈ {–2; –1}.
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
>>Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
x2 = 2mx – 2m + 3 hay x2 − 2mx + 2m – 3 = 0. (*)
Phương trình (*) có:
∆' = (−m)2 – 1.(2m – 3) = m2 – 2m + 3 = (m – 1)2 + 2 > 0, với mọi m.
Do đó phương trình (*) luôn có hai nghiệm x1, x2 phân biệt, hay đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1); (x2; y2).
Khi đó, ta có: \[{y_1} = x_1^2;\,\,{y_2} = x_2^2.\]
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2}\; = 2m\\{x_1}{x_2} = 2m - 3\end{array} \right..\)
Theo bài, tung độ hai giao điểm không vượt quá 9 tức là y1 + y2 ≤ 9, suy ra \[x_1^2 + x_2^2 \le 9\]
Ta có:
\[x_1^2 + x_2^2 \le 9\]
(x1 + x2)2 – 2x1x2 ≤ 9
(2m)2 – 2.(2m – 3) ≤ 9
4m2 – 4m – 3 ≤ 0
(4m2 – 6m) + (2m – 3) ≤ 0
2m(2m – 3) + (2m – 3) ≤ 0
(2m – 3)(2m + 1) ≤ 0
2m – 3 ≤ 0 và 2m + 1 ≥ 0 (do 2m – 3 < 2m + 1).
\(m \le \frac{3}{2}\) và \(m \ge - \frac{1}{2}\)
\( - \frac{1}{2} \le m \le \frac{3}{2}\)
Mà m là số nguyên nên m ∈ {0; 1}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
>Lời giải
Đáp án đúng là: C
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
x2 = (m + 2)x + 3 hay x2 – (m + 2)x – 3 = 0. (*)
Phương trình (*) có:
∆ = [–(m + 2)]2 – 4.1.(–3) = (m + 2)2 + 12 > 0 với mọi m.
Do đó phương trình (*) luôn có 2 nghiệm phân biệt x1, x2 nên đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2.
Theo định lí Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 2\\{x_1}{x_2} = - 3.\end{array} \right.\)
Theo bài, x1 ∈ ℤ, x2 ∈ ℤ nên x1, x2 ∈ Ư(–3) = {1; –1; 3; –3}.
Ta có bảng sau:
x1 | 1 | –1 | 3 | –3 |
x2 | –3 | 3 | –1 | 1 |
m + 2 = x1 + x2 | –2 | 2 | 2 | –2 |
m | –4 | 0 | 0 | –4 |
Từ bảng, ta có: m ∈ {0; –4}.
Vậy có hai giá trị của m thỏa mãn yêu cầu đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.