Câu hỏi:

31/05/2025 43

Có bao nhiêu mệnh đề đúng trong các mệnh đề sau đây?

i) Hình hộp đứng có đáy là hình vuông là hình lập phương.

ii) Hình hộp chữ nhật có tất cả các mặt là hình chữ nhật.

iii) Hình lăng trụ đứng có các cạnh bên vuông góc với đáy.

iv) Hình hộp có tất cả các cạnh bằng nhau là hình lập phương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

Các mệnh đề đúng

Hình hộp chữ nhật có tất cả các mặt là hình chữ nhật.

Hình lăng trụ đứng có các cạnh bên vuông góc với đáy.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

B

B (ảnh 1)

Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.

Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).

Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).

Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

Lời giải

Trong mặt phẳng (A'B'C'D'), kẻ  A'H ^ B'D' tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{B'D' \bot A'H}\\{B'D' \bot AA'\left( {{\rm{do }}AA' \bot \left( {A'B'C'D'} \right)} \right)}\end{array} \Rightarrow B'D' \bot \left( {AA'H} \right) \Rightarrow B'D' \bot AH} \right.\).

Do đó \(\widehat {AHA'}\) là góc phẳng nhị diện \(\left[ {A,B'D',A'} \right]\).

Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười). (ảnh 2)

Tam giác A'B'D' vuông tại A' có đường cao A'H nên

\(\frac{1}{{A'{H^2}}} = \frac{1}{{A'{{B'}^2}}} + \frac{1}{{A'{{D'}^2}}} \Rightarrow A'H = \frac{{A'B' \cdot A'D'}}{{\sqrt {A'{{B'}^2} + A'{{D'}^2}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AHA'\) vuông tại \(A'\) có:

\(\tan \widehat {AHA'} = \frac{{AA'}}{{A'H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AHA'} \approx 51,1^\circ \).

Trả lời: 51,1.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP