Câu hỏi:

31/05/2025 49 Lưu

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông cân tại \(A\). Gọi \(M\) là trung điểm của \(BC\), mệnh đề nào sau đây sai ?     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

mệnh đề nào sau đây sai ? (ảnh 1)

Có AB ^ AC, AA' ^ AB Þ AB ^ (AA'C'C) Þ (ABB'A') ^ (AA'C'C) Þ \(\left( {ABB'} \right)\,\, \bot \,\left( {ACC'} \right)\).

AM ^ BC, AM ^ CC' Þ AM ^ (BCC'B') Þ \(\left( {AMC'} \right)\,\, \bot \,\left( {BCC'} \right)\).

\(\left( {ABC} \right)\, \bot \,\left( {ABB'A'} \right)\) nên \(\left( {ABC} \right)\, \bot \,\left( {ABA'} \right)\). Do đó đáp án B sai.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Góc giữa (SBD) và (ABCD) là (ảnh 1)

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.

\(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).

Lời giải

B

B (ảnh 1)

Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.

Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).

Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).

Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP