Cho phương trình \(\tan \left( {2x - 15^\circ } \right) = 1\) (*).
a) Phương trình (*) có nghiệm \(x = 30^\circ + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).
b) Phương trình có nghiệm âm lớn nhất bằng \( - 30^\circ \).
c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) bằng \(180^\circ \).
d) Trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\), phương trình có nghiệm lớn nhất bằng \(60^\circ \).
Cho phương trình \(\tan \left( {2x - 15^\circ } \right) = 1\) (*).
a) Phương trình (*) có nghiệm \(x = 30^\circ + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).
b) Phương trình có nghiệm âm lớn nhất bằng \( - 30^\circ \).
c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) bằng \(180^\circ \).
d) Trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\), phương trình có nghiệm lớn nhất bằng \(60^\circ \).
Quảng cáo
Trả lời:
Ta có \(\tan \left( {2x - 15^\circ } \right) = 1 \Leftrightarrow 2x - 15^\circ = 45^\circ + k90^\circ \Leftrightarrow x = 30^\circ + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).
Với \(k = - 1\), ta có \(x = - 60^\circ \) là nghiệm âm lớn nhất của phương trình (*).
\( - 180^\circ < x < 90^\circ \Rightarrow - 180^\circ < 30^\circ + k90^\circ < 90^\circ \,\,\left( {k \in \mathbb{Z}} \right) \Rightarrow k \in \left\{ { - 2; - 1;0} \right\}\)\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = - 150^\circ }\\{x = - 60^\circ }\\{x = 30^\circ }\end{array}} \right.\).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
\(\cos 3x = \cos 12^\circ \)\( \Leftrightarrow \cos 3x = \cos \frac{\pi }{{15}}\)
\( \Leftrightarrow 3x = \pm \frac{\pi }{{15}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Hạ bậc hai vế, ta được phương trình \(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2}\).
Ta có\(\cos \left( {2x + \pi } \right) = - \cos 2x\) (Áp dụng giá trị lượng giác của 2 cung hơn kém \(\pi \)).
\(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2} \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = \cos \left( {2x + \pi } \right) \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = - \cos \left( {2x} \right)\).
\[ \Leftrightarrow \cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x \Leftrightarrow \left[ \begin{array}{l}4x + \frac{\pi }{2} = 2x + k2\pi \\4x + \frac{\pi }{2} = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{{12}} + k\frac{\pi }{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\].
Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.