Cho phương trình \({\sin ^2}\left( {2x + \frac{\pi }{4}} \right) = {\cos ^2}\left( {x + \frac{\pi }{2}} \right)\).
a) Hạ bậc hai vế, ta được phương trình \(\frac{{1 + \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {2x + \pi } \right)}}{2}\).
b) Ta có \(\cos \left( {2x + \pi } \right) = - \cos 2x\).
c) Phương trình đã cho đưa về dạng \(\cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x\).
d) Nghiệm của phương trình đã cho là \(x = - \frac{\pi }{4} + k\pi \) và
Cho phương trình \({\sin ^2}\left( {2x + \frac{\pi }{4}} \right) = {\cos ^2}\left( {x + \frac{\pi }{2}} \right)\).
a) Hạ bậc hai vế, ta được phương trình \(\frac{{1 + \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {2x + \pi } \right)}}{2}\).
b) Ta có \(\cos \left( {2x + \pi } \right) = - \cos 2x\).
c) Phương trình đã cho đưa về dạng \(\cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x\).
d) Nghiệm của phương trình đã cho là \(x = - \frac{\pi }{4} + k\pi \) và
Quảng cáo
Trả lời:

Hạ bậc hai vế, ta được phương trình \(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2}\).
Ta có\(\cos \left( {2x + \pi } \right) = - \cos 2x\) (Áp dụng giá trị lượng giác của 2 cung hơn kém \(\pi \)).
\(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2} \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = \cos \left( {2x + \pi } \right) \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = - \cos \left( {2x} \right)\).
\[ \Leftrightarrow \cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x \Leftrightarrow \left[ \begin{array}{l}4x + \frac{\pi }{2} = 2x + k2\pi \\4x + \frac{\pi }{2} = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{{12}} + k\frac{\pi }{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\].
Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sqrt 2 \cos \left( {2x + \frac{\pi }{4}} \right) - 1 = 0 \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }} \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi }\\{2x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = - \frac{\pi }{4} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).
+ Xét nghiệm \(x = k\pi \): Do \(x \in \left( {0;\pi } \right)\) nên \(0 < k\pi < \pi \Leftrightarrow 0 < k < 1\) loại do \(\left( {k \in \mathbb{Z}} \right)\).
+ Xét nghiệm \(x = - \frac{\pi }{4} + k\pi \): Do \(x \in \left( {0;\pi } \right)\) nên \(0 < - \frac{\pi }{4} + k\pi < \pi \Leftrightarrow \frac{1}{4} < k < \frac{5}{4}\), do đó \(k = 1 \Rightarrow x = \frac{{3\pi }}{4}.\)
Vậy trên khoảng \(\left( {0;\pi } \right)\) phương trình \(\left( 1 \right)\) có tập nghiệm là \(S = \left\{ {\frac{{3\pi }}{4}} \right\}.\)
+ Xét nghiệm \(x = k\pi \):
Do \(x \in \left( { - 3\pi ;3\pi } \right)\) nên \( - 3\pi < k\pi < 3\pi \Leftrightarrow - 3 < k < 3\) do \(k \in \mathbb{Z}\) nên \(k \in \left\{ { \pm 1; \pm 2;0} \right\}\).
Vây trên khoảng \(\left( { - 3\pi ;3\pi } \right)\) phương trình có các nghiệm là \( \pm 2\pi ; \pm \pi ;0\). Tổng các nghiệm này là \({S_1} = 0\).
+ Xét nghiệm \(x = - \frac{\pi }{4} + k\pi \):
Do \(x \in \left( { - 3\pi ;3\pi } \right)\) nên \( - 3\pi < - \frac{\pi }{4} + k\pi < 3\pi \Leftrightarrow - \frac{{11}}{4} < k < \frac{{13}}{4}\) do \(k \in \mathbb{Z}\) nên\(k \in \left\{ { - 2; - 1;0;1;2;3} \right\}\).
Vây trên khoảng \(\left( { - 3\pi ;3\pi } \right)\) phương trình có các nghiệm là
\(x = - \frac{{9\pi }}{4};x = - \frac{{5\pi }}{4};x = - \frac{\pi }{4};x = \frac{{3\pi }}{4};x = \frac{{7\pi }}{4};x = \frac{{11\pi }}{4}\).
Tổng các nghiệm này là \({S_2} = \frac{{3\pi }}{2}\).
Vậy tổng các nghiệm của phương trình \(\left( 1 \right)\) trong khoảng \(\left( { - 3\pi ;3\pi } \right)\) là \(S = {S_1} + {S_2} = \frac{{3\pi }}{2}.\)
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Lời giải
Ta có \(\tan \left( {2x - 15^\circ } \right) = 1 \Leftrightarrow 2x - 15^\circ = 45^\circ + k90^\circ \Leftrightarrow x = 30^\circ + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).
Với \(k = - 1\), ta có \(x = - 60^\circ \) là nghiệm âm lớn nhất của phương trình (*).
\( - 180^\circ < x < 90^\circ \Rightarrow - 180^\circ < 30^\circ + k90^\circ < 90^\circ \,\,\left( {k \in \mathbb{Z}} \right) \Rightarrow k \in \left\{ { - 2; - 1;0} \right\}\)\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = - 150^\circ }\\{x = - 60^\circ }\\{x = 30^\circ }\end{array}} \right.\).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.