Câu hỏi:

05/06/2025 55 Lưu

Tổng tất cả các nghiệm của phương trình \[\cos \left( {\sin x} \right) = 1\] trên \[\left[ {0;2\pi } \right]\] bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \[x \in \left[ {0;2\pi } \right]\] \[ \Rightarrow \sin x \in \left[ { - 1;1} \right]\]

Khi đó: \[\cos \left( {\sin x} \right) = 1 \Leftrightarrow \sin x = k2\pi \] \[\left( {k \in \mathbb{Z}} \right)\] với \[ - 1 \le k2\pi  \le 1 \Leftrightarrow k = 0\].

Phương trình trở thành \[\sin x = 0 \Leftrightarrow x = m\pi  \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pi \end{array} \right.\] \[\left( {m \in \mathbb{Z}} \right)\].

Vậy tổng tất cả các nghiệm của phương trình \[\cos \left( {\sin x} \right) = 1\] trên \[\left[ {0;2\pi } \right]\] bằng \[\pi \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Ta có 1sinx13sinx21, x.

Do đó không tồn tại căn bậc hai của \(\sin x - 2.\)

Vậy tập xác định \[D = \emptyset .\]

Lời giải

Ta có \(\cot 3x = - \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot 3x = \cot \left( {\frac{{ - \pi }}{3}} \right) \Leftrightarrow 3x = \frac{{ - \pi }}{3} + k\pi  \Leftrightarrow x = \frac{{ - \pi }}{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

\( - \frac{\pi }{2} < \frac{{ - \pi }}{9} + k\frac{\pi }{3} < 0\,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \frac{{ - 7}}{6} < k < \frac{1}{3} \Rightarrow k = \left\{ { - 1;0} \right\} \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \pi }}{9}}\\{x = \frac{{ - 4\pi }}{9}}\end{array}.} \right.\)

Đáp án:           a) Sai,             b) Sai,             c) Đúng,          d) Đúng.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP