Câu hỏi:

05/06/2025 9

Một vận động viên bắn súng nằm trên mặt đất để gắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất \(25\,\,\left( {\rm{m}} \right)\) tại một góc ngắm (góc hợp bởi phương ngắm với phương ngang). Nếu giảm góc ngắm đi một nửa thì vận động viên bắn trúng mục tiêu cách mặt đất \(10\,\,\left( {\rm{m}} \right)\). Khoảng cách từ vận động viên đến bức tường bằng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khoảng cách từ vận động viên đến bức tường bằng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)? (ảnh 1)

Gọi \(d\) là khoảng cách từ vận động viên đến bức tường, \(\alpha \) là góc ngắm lúc đầu của vận động viên.

Ta có \(\tan \alpha = \frac{{25}}{d}\); \(\tan \frac{\alpha }{2} = \frac{{10}}{d}\).

Công thức nhân đôi:

\(\tan \alpha = \frac{{2\tan \frac{\alpha }{2}}}{{1 - {{\tan }^2}\frac{\alpha }{2}}} \Rightarrow \frac{{25}}{d} = \frac{{\frac{{20}}{d}}}{{1 - \frac{{100}}{{{d^2}}}}}\)\( \Leftrightarrow \frac{{25}}{d} = \frac{{20d}}{{{d^2} - 100}}\)\( \Leftrightarrow {d^2} = 500\)\( \Leftrightarrow d = 10\sqrt 5 \simeq 22,4\,\,\left( {\rm{m}} \right)\).

Đáp án: 22,4.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\cot 3x = - \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot 3x = \cot \left( {\frac{{ - \pi }}{3}} \right) \Leftrightarrow 3x = \frac{{ - \pi }}{3} + k\pi  \Leftrightarrow x = \frac{{ - \pi }}{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

\( - \frac{\pi }{2} < \frac{{ - \pi }}{9} + k\frac{\pi }{3} < 0\,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \frac{{ - 7}}{6} < k < \frac{1}{3} \Rightarrow k = \left\{ { - 1;0} \right\} \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \pi }}{9}}\\{x = \frac{{ - 4\pi }}{9}}\end{array}.} \right.\)

Đáp án:           a) Sai,             b) Sai,             c) Đúng,          d) Đúng.

Lời giải

\(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x - \frac{\pi }{4} = x + \frac{{3\pi }}{4} + k2\pi }\\{2x - \frac{\pi }{4} = \frac{\pi }{4} - x + k2\pi }\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \pi + k2\pi }\\{x = \frac{\pi }{6} + k\frac{{2\pi }}{3}}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\).

\({\rm{V\`i }}x \in \left( {0;\pi } \right){\rm{ n\^e n }}\,x \in \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6}} \right\}\). Ta có \(\frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \).

Đáp án:           a) Đúng,          b) Đúng,         c) Sai,              d) Đúng.

Câu 3

Trên đường tròn lượng giác có điểm gốc là \(A\). Điểm \(M\)thuộc đường tròn sao cho cung lượng giác \(AM\) có số đo \(45^\circ \). Gọi \(N\) là điểm đối xứng với \(M\) qua trục \(Ox\), số đo cung lượng giác \(AN\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tính giá trị của biểu thức \(M = \cos \frac{{2\pi }}{7} + \cos \frac{{4\pi }}{7} + \cos \frac{{6\pi }}{7}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tổng tất cả các nghiệm của phương trình \[\cos \left( {\sin x} \right) = 1\] trên \[\left[ {0;2\pi } \right]\] bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay