Một vận động viên bắn súng nằm trên mặt đất để gắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất \(25\,\,\left( {\rm{m}} \right)\) tại một góc ngắm (góc hợp bởi phương ngắm với phương ngang). Nếu giảm góc ngắm đi một nửa thì vận động viên bắn trúng mục tiêu cách mặt đất \(10\,\,\left( {\rm{m}} \right)\). Khoảng cách từ vận động viên đến bức tường bằng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Một vận động viên bắn súng nằm trên mặt đất để gắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất \(25\,\,\left( {\rm{m}} \right)\) tại một góc ngắm (góc hợp bởi phương ngắm với phương ngang). Nếu giảm góc ngắm đi một nửa thì vận động viên bắn trúng mục tiêu cách mặt đất \(10\,\,\left( {\rm{m}} \right)\). Khoảng cách từ vận động viên đến bức tường bằng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Quảng cáo
Trả lời:

Gọi \(d\) là khoảng cách từ vận động viên đến bức tường, \(\alpha \) là góc ngắm lúc đầu của vận động viên.
Ta có \(\tan \alpha = \frac{{25}}{d}\); \(\tan \frac{\alpha }{2} = \frac{{10}}{d}\).
Công thức nhân đôi:
\(\tan \alpha = \frac{{2\tan \frac{\alpha }{2}}}{{1 - {{\tan }^2}\frac{\alpha }{2}}} \Rightarrow \frac{{25}}{d} = \frac{{\frac{{20}}{d}}}{{1 - \frac{{100}}{{{d^2}}}}}\)\( \Leftrightarrow \frac{{25}}{d} = \frac{{20d}}{{{d^2} - 100}}\)\( \Leftrightarrow {d^2} = 500\)\( \Leftrightarrow d = 10\sqrt 5 \simeq 22,4\,\,\left( {\rm{m}} \right)\).
Đáp án: 22,4.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có
Do đó không tồn tại căn bậc hai của \(\sin x - 2.\)
Vậy tập xác định \[D = \emptyset .\]
Lời giải
Ta có \(\cot 3x = - \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot 3x = \cot \left( {\frac{{ - \pi }}{3}} \right) \Leftrightarrow 3x = \frac{{ - \pi }}{3} + k\pi \Leftrightarrow x = \frac{{ - \pi }}{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).
\( - \frac{\pi }{2} < \frac{{ - \pi }}{9} + k\frac{\pi }{3} < 0\,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \frac{{ - 7}}{6} < k < \frac{1}{3} \Rightarrow k = \left\{ { - 1;0} \right\} \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \pi }}{9}}\\{x = \frac{{ - 4\pi }}{9}}\end{array}.} \right.\)
Đáp án: a) Sai, b) Sai, c) Đúng, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

