Câu hỏi:

07/07/2025 48 Lưu

Cho hình chóp \[S.ABCD\] có \[SA \bot \left( {ABCD} \right)\], đáy \[ABCD\] là hình thang vuông cạnh \[a\]. Gọi \[I\] và \[J\] lần lượt là trung điểm của \[AB\] và \[CD\]. Tính khoảng cách giữa đường thẳng \[IJ\] và \[\left( {SAD} \right)\].

A. \(\frac{{a\sqrt 2 }}{2}\).   
B. \(\frac{{a\sqrt 3 }}{3}\).
C. \(\frac{a}{2}\).                              
D. \(\frac{a}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C

C (ảnh 1)

Ta có: Vì \[IJ\]// \[AD\]nên \[IJ\]// \[\left( {SAD} \right)\]\[ \Rightarrow d\left( {IJ,\left( {SAD} \right)} \right) = d\left( {I,\left( {SAD} \right)} \right) = IA = \frac{a}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a\sqrt 2 \).        
B. a.                         
C. \(\frac{a}{2}\).             
D. \(\frac{{3a}}{4}\).

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ^ (ABCD), SA = a. Khoảng cách từ S đến mặt phẳng (ABCD) là  	 (ảnh 1)

Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.

Câu 2

A. 42.                       
B. 126.                     
C. 14.                                     
D. 56.

Lời giải

C

Thể tích khối chóp là \(V = \frac{1}{3}Bh = \frac{1}{3}.7.6 = 14\).

Câu 4

A. \(\frac{{3a}}{4}\).
B. \(\frac{{2a}}{3}\).
C. \(\frac{{a\sqrt 3 }}{2}\).                          
D. \[a\sqrt 3 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{a}{2}\).    
B. \(\frac{{a\sqrt 2 }}{2}\).                          
C. \(\frac{{a\sqrt 2 }}{3}\).                          
D. \(\frac{{a\sqrt 2 }}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP