Câu hỏi:

07/07/2025 29 Lưu

Cho hình chóp \[S.ABCD\] có \[SA \bot \left( {ABCD} \right)\], đáy \[ABCD\] là hình thang vuông cạnh \[a\]. Gọi \[I\] và \[J\] lần lượt là trung điểm của \[AB\] và \[CD\]. Tính khoảng cách giữa đường thẳng \[IJ\] và \[\left( {SAD} \right)\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C

C (ảnh 1)

Ta có: Vì \[IJ\]// \[AD\]nên \[IJ\]// \[\left( {SAD} \right)\]\[ \Rightarrow d\left( {IJ,\left( {SAD} \right)} \right) = d\left( {I,\left( {SAD} \right)} \right) = IA = \frac{a}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ^ (ABCD), SA = a. Khoảng cách từ S đến mặt phẳng (ABCD) là  	 (ảnh 1)

Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.

Câu 2

Lời giải

C

Thể tích khối chóp là \(V = \frac{1}{3}Bh = \frac{1}{3}.7.6 = 14\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP