Câu hỏi:

07/07/2025 10

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Khi đó:

a) Hai đường thẳng AB và A'D' vuông góc với nhau.

b) Hai mặt phẳng (ABCD) và (BB'D'D) vuông góc với nhau.

c) Khoảng cách từ điểm B đến mặt phẳng (AA'C'C) bằng \(\frac{{a\sqrt 3 }}{2}\).

d) Khoảng cách giữa hai đường thẳng BD và A'C' bằng a.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hai đường thẳng AB và A'D' vuông góc với nhau. (ảnh 1)

a) Có AB ^ AD mà AD // A'D' nên AB ^ A'D'.

b) Có BB' ^ (ABCD) Þ BB' ^ AC.

Lại có  BD ^ AC nên AC ^ (BB'D'D) Þ (ABCD) ^ (BB'D'D).

c) Gọi O, O' lần lượt là tâm của ABCD và A'B'C'D'.

Có BO ^ AC và AA' ^ BO nên BO ^ (AA'C'C).

Suy ra d(B, (AA'C'C)) = BO = \(\frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\).

d) Vì OO' ^ (ABCD) Þ OO' ^ BD.

OO' ^ (A'B'C'D') Þ OO' ^ A'C'. Do đó d(BD, A'C') = OO' = a.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

a) b) Ta có: \(AD//BC \Rightarrow AD//(SBC) \Rightarrow d(D,(SBC)) = d(A,(SBC))\).

Trong mặt phẳng \((SAB)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot (SBC)\) hay \(d(A,(SBC)) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d(D,(SBC)) = d(A,(SBC)) = AH = \frac{{2a\sqrt 3 }}{3}\).

c) Trong mặt phẳng \((SAD)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot (SAD) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d(AB,SD) = AK = \frac{{2a\sqrt 5 }}{5}\).

c) Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là:

\({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

Câu 2

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ^ (ABCD), SA = a. Khoảng cách từ S đến mặt phẳng (ABCD) là  	 (ảnh 1)

Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP