Câu hỏi:

14/07/2025 37 Lưu

Cho hàm số f(x) xác định trên ℝ và thỏa mãn \(\mathop {\lim }\limits_{x \to - 1} \frac{{f\left( x \right) - 2}}{{x + 1}} = 2024\). Giới hạn \[\mathop {\lim }\limits_{x \to - 1} \frac{{{f^2}\left( x \right) + f\left( x \right) - 6}}{{x + 1}}\] bằng     

A. 2.                              
B. 6072.                        
C. 10120.                                                                     
D. 2024.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C

Đặt \(g\left( x \right) = \frac{{f\left( x \right) - 2}}{{x + 1}}\)\( \Rightarrow f\left( x \right) = \left( {x + 1} \right)g\left( x \right) + 2\).

Ta cần tính \(\mathop {\lim }\limits_{x \to  - 1} f\left( x \right)\).

Ta có \(\mathop {\lim }\limits_{x \to  - 1} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to  - 1} \left[ {\left( {x + 1} \right)g\left( x \right) + 2} \right] = 2\).

Ta có \[\mathop {\lim }\limits_{x \to  - 1} \frac{{{f^2}\left( x \right) + f\left( x \right) - 6}}{{x + 1}}\]\[ = \mathop {\lim }\limits_{x \to  - 1} \frac{{\left[ {f\left( x \right) + 3} \right]\left[ {f\left( x \right) - 2} \right]}}{{x + 1}}\]

\[ = \mathop {\lim }\limits_{x \to  - 1} \frac{{\left[ {f\left( x \right) - 2} \right]}}{{x + 1}}.\mathop {\lim }\limits_{x \to  - 1} \left[ {f\left( x \right) + 3} \right] = 2024.\left( {2 + 3} \right) = 2024.5 = 10120\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\mathop {\lim }\limits_{x \to 2} 3f\left( x \right) = 3\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 3.2024 = 6072\).

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right)}}{4} = \frac{{2024}}{4} = 506\).

c) \(\mathop {\lim }\limits_{x \to 2} \sqrt {f\left( x \right)}  = \sqrt {2024}  = 2\sqrt {506} \).

d) \(\mathop {\lim }\limits_{x \to 2} \left[ {100x - \frac{1}{2}f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 2} 100x - \frac{1}{2}\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)\( = 200 - \frac{1}{2}.2024 =  - 812\).

Đáp án: a) Sai;  b) Đúng;   c) Đúng;   d) Đúng.

Lời giải

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{{x^2} + 3x + 1}}{{x + 1}} + ax + b} \right) = 1\)\( \Leftrightarrow \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{\left( {a + 1} \right){x^2} + \left( {a + b + 3} \right)x + b + 1}}{{x + 1}}} \right) = 1\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{\left( {a + 1} \right)x + \left( {a + b + 3} \right) + \frac{{b + 1}}{x}}}{{1 + \frac{1}{x}}}} \right) = 1\) \( \Leftrightarrow \left\{ \begin{array}{l}a + 1 = 0\\a + b + 3 = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b =  - 1\end{array} \right.\).

Do đó T = 2024a – 4049b = 2024.(−1) – 4049.(−1) = 2025.

Trả lời: 2025.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - \sqrt 3 \).            
B. +∞.                           
C. −3.                                     
D. \(\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2.                              
B. −1.                            
C. 3.  
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP