Câu hỏi:

14/07/2025 9

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x - 2\;\;\;\;\;\;\;\;\;\;\;khi\;x < - 1\\\sqrt {{x^2} + 1} + m\;\;khi\;x \ge - 1\end{array} \right.\). Khi đó

a) Giới hạn \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \sqrt 5 + m\).

b) Giới hạn \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = - 3\).

c) Giới hạn\(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \sqrt 2 + m\).

d) Khi \(m = 3 + \sqrt 2 \) thì hàm số đã cho có giới hạn tại x0 = −1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \(\mathop {\lim }\limits_{x \to  - 2} f\left( x \right) =  - 4\).

b) Ta có \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x - 2} \right) =  - 3\).

c) Ta có \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sqrt {{x^2} + 1}  + m} \right) = m + \sqrt 2 \).

d) Hàm số đã cho có giới hạn tại x0 = −1 khi \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = f\left( { - 1} \right) \Leftrightarrow m =  - 3 - \sqrt 2 \).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {2{x^3} - {x^2} + 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^3}\left( {2 - \frac{1}{x} + \frac{1}{{{x^3}}}} \right)} \right]\).

Vì \(\mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty \) và \(\mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \frac{1}{x} + \frac{1}{{{x^3}}}} \right) = 2\) nên \(\mathop {\lim }\limits_{x \to  - \infty } \left( {2{x^3} - {x^2} + 1} \right) =  - \infty \).

Câu 2

Lời giải

D

Ta có \(P = 2,13131313... = 2 + \frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\)

Ta có \(\frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\) là tổng của cấp số nhân lùi vô hạn với \({u_1} = \frac{{13}}{{100}}\) và \(q = \frac{1}{{100}}\).

Khi đó \(P = 2 + \frac{{\frac{{13}}{{100}}}}{{1 - \frac{1}{{100}}}} = \frac{{211}}{{99}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hai dãy số (un) và (vn).

a) Nếu \(\lim {u_n} = 2\) thì \(\lim \left( {{u_n} + 3} \right) = 6\).

b) Nếu \(\lim {u_n} = 2\)\(\lim {v_n} = + \infty \) thì lim(un.vn) = +∞.

c) Nếu un = 2n – 3 với n * thì \(\lim \frac{{{u_n}}}{{n + 4}} = \frac{1}{2}\).

d) limun = −∞ với un = n3 – 5n + 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP