Câu hỏi:
14/07/2025 9
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x - 2\;\;\;\;\;\;\;\;\;\;\;khi\;x < - 1\\\sqrt {{x^2} + 1} + m\;\;khi\;x \ge - 1\end{array} \right.\). Khi đó
a) Giới hạn \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \sqrt 5 + m\).
b) Giới hạn \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = - 3\).
c) Giới hạn\(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \sqrt 2 + m\).
d) Khi \(m = 3 + \sqrt 2 \) thì hàm số đã cho có giới hạn tại x0 = −1.
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x - 2\;\;\;\;\;\;\;\;\;\;\;khi\;x < - 1\\\sqrt {{x^2} + 1} + m\;\;khi\;x \ge - 1\end{array} \right.\). Khi đó
a) Giới hạn \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \sqrt 5 + m\).
b) Giới hạn \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = - 3\).
c) Giới hạn\(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \sqrt 2 + m\).
d) Khi \(m = 3 + \sqrt 2 \) thì hàm số đã cho có giới hạn tại x0 = −1.
Quảng cáo
Trả lời:
a) Ta có \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = - 4\).
b) Ta có \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {x - 2} \right) = - 3\).
c) Ta có \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\sqrt {{x^2} + 1} + m} \right) = m + \sqrt 2 \).
d) Hàm số đã cho có giới hạn tại x0 = −1 khi \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = f\left( { - 1} \right) \Leftrightarrow m = - 3 - \sqrt 2 \).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
\(\mathop {\lim }\limits_{x \to - \infty } \left( {2{x^3} - {x^2} + 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( {2 - \frac{1}{x} + \frac{1}{{{x^3}}}} \right)} \right]\).
Vì \(\mathop {\lim }\limits_{x \to - \infty } {x^3} = - \infty \) và \(\mathop {\lim }\limits_{x \to - \infty } \left( {2 - \frac{1}{x} + \frac{1}{{{x^3}}}} \right) = 2\) nên \(\mathop {\lim }\limits_{x \to - \infty } \left( {2{x^3} - {x^2} + 1} \right) = - \infty \).
Lời giải
D
Ta có \(P = 2,13131313... = 2 + \frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\)
Ta có \(\frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\) là tổng của cấp số nhân lùi vô hạn với \({u_1} = \frac{{13}}{{100}}\) và \(q = \frac{1}{{100}}\).
Khi đó \(P = 2 + \frac{{\frac{{13}}{{100}}}}{{1 - \frac{1}{{100}}}} = \frac{{211}}{{99}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.