Biết rằng \(\mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2{x^3} + 6\sqrt 3 }}{{3 - {x^2}}} = a\sqrt 3 + b\). Tính a + b.
Biết rằng \(\mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2{x^3} + 6\sqrt 3 }}{{3 - {x^2}}} = a\sqrt 3 + b\). Tính a + b.
Quảng cáo
Trả lời:
\(\mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2{x^3} + 6\sqrt 3 }}{{3 - {x^2}}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2\left( {{x^3} + {{\left( {\sqrt 3 } \right)}^3}} \right)}}{{3 - {x^2}}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2\left( {x + \sqrt 3 } \right)\left( {{x^2} - \sqrt 3 x + 3} \right)}}{{\left( {\sqrt 3 - x} \right)\left( {\sqrt 3 + x} \right)}}\)
\( = \mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2\left( {{x^2} - \sqrt 3 x + 3} \right)}}{{\sqrt 3 - x}}\)\( = \frac{{2\left( {3 + 3 + 3} \right)}}{{2\sqrt 3 }} = \frac{9}{{\sqrt 3 }} = 3\sqrt 3 \).
Suy ra a = 3; b = 0. Do đó a + b = 3.
Trả lời: 3.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
D
Ta có \(P = 2,13131313... = 2 + \frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\)
Ta có \(\frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\) là tổng của cấp số nhân lùi vô hạn với \({u_1} = \frac{{13}}{{100}}\) và \(q = \frac{1}{{100}}\).
Khi đó \(P = 2 + \frac{{\frac{{13}}{{100}}}}{{1 - \frac{1}{{100}}}} = \frac{{211}}{{99}}\).
Lời giải
\(\mathop {\lim }\limits_{n \to + \infty } \frac{{3 + {3^2} + {3^3} + ... + {3^n}}}{{4 + {4^2} + {4^3} + ... + {4^n}}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\frac{{3\left( {1 - {3^n}} \right)}}{{1 - 3}}}}{{\frac{{4\left( {1 - {4^n}} \right)}}{{1 - 4}}}}\)\( = \frac{9}{8}\mathop {\lim }\limits_{n \to + \infty } \frac{{1 - {3^n}}}{{1 - {4^n}}}\)\( = \frac{9}{8}\mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( {\frac{1}{4}} \right)}^n} - {{\left( {\frac{3}{4}} \right)}^n}}}{{{{\left( {\frac{1}{4}} \right)}^n} - 1}} = 0\).
Trả lời: 0.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.