Câu hỏi:

19/08/2025 221 Lưu

 Cho bất phương trình log(x – 40) + log(60 – x) ≤ 2.

a) Bất phương trình trên tương đương với log[(x – 40)(60 – x)] ≤ 2.

b) Gọi D = (a; b) là tập xác định của bất phương trình trên thì b – a = 20.

c) Có 19 số nguyên dương thỏa mãn bất phương trình trên.

d) Tập nghiệm của bất phương trình trên chứa 8 số tự nhiên chẵn.

Câu 3. Cho log23 = a; log252 = b. Khi đó:

a) \({\log _2}25 = \frac{1}{b}\).

b) \({\log _2}75 = a + \frac{1}{b}\).

c) log2(3.9) = 9a.

d) Nếu x; y là các số nguyên tố thỏa mãn \({\log _{48600}}25 = \frac{1}{{xab + yb + z}}\) thì x + y + z = 10.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \(\left\{ \begin{array}{l}x - 40 > 0\\60 - x > 0\end{array} \right. \Leftrightarrow 40 < x < 60\).

log(x – 40) + log(60 – x) ≤ 2 Û log[(x – 40)(60 – x)] ≤ 2 Û (x – 40)(60 – x) ≤ 102

Û −x2 + 100x – 2500 ≤ 0 Û −(x – 50)2 ≤ 0, xÎ ℝ.

Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình là D = (40; 60).

a) Bất pương trình tương đương với log[(x – 40)(60 – x)] ≤ 2.

b) Tập nghiệm của bất phương trình D = (40; 60). Suy ra a = 40; b = 60. Do đó b – a = 20.

c) Tập các số nguyên dương thỏa mãn bất phương trình trên là {41; 42; 43; 44; 45; ....; 59}. Có 19 số nguyên dương thỏa mãn.

d) Tập các số tự nhiên chẵn thỏa mãn bất phương trình trên là {42; 44; 46; ...; 58}. Có 9 số tự nhiên chẵn thỏa mãn yêu cầu.

 Đáp án: a) Đúng;   b) Đúng;    c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).

Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.

Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:

a+b=m+2ab=27a2=b a+b=m+2a3=27a2=b a=3b=9m+2=12m=10

Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.

Vậy m = 10 là giá trị cần tìm.

Trả lời: 10.

Câu 2

A. \(S = \left[ { - \frac{3}{2}; + \infty } \right)\).                       
B. \(S = \left( { - \frac{3}{2}; + \infty } \right)\).                       
C. S = [−2; +∞).      
D. (−2; +∞).

Lời giải

A

Điều kiện: 2x + 4 > 0 Û x > −2.

log2(2x + 4) ≥ 0 Û 2x + 4 ≥ 1 Û \(x \ge - \frac{3}{2}\).

Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình \(S = \left[ { - \frac{3}{2}; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. f(x) nghịch biến và g(x) đồng biến trên tập xác định. 
B. f(x) đồng biến và g(x) nghịch biến trên tập xác định. 
C. f(x) và g(x) đồng biến trên tập xác định. 
D. f(x) và g(x) nghịch biến trên tập xác định.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. D = Æ.                                                      
B. D = ℝ\{−2; −1}. 
C. D = ℝ.                                                   
D. D = (−∞; −2) È (−1; +∞).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP