Câu hỏi:

27/07/2025 14 Lưu

Tìm giá trị của tham số m để phương trình \({\left( {\frac{1}{5}} \right)^{{x^2} - \left( {m + 2} \right)x}} = {5^{27}}\) có hai nghiệm phân biệt a và b thỏa mãn điều kiện \({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).

Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.

Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:

a+b=m+2ab=27a2=b a+b=m+2a3=27a2=b a=3b=9m+2=12m=10

Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.

Vậy m = 10 là giá trị cần tìm.

Trả lời: 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

\({\left( {\frac{2}{3}} \right)^{{x^2} - x + 1}} > {\left( {\frac{2}{3}} \right)^{2x - 1}}\)\( \Leftrightarrow {x^2} - x + 1 < 2x - 1\)\( \Leftrightarrow {x^2} - 3x + 2 < 0\) Û 1 < x < 2.

Vậy tập nghiệm của bất phương trình là S = (1; 2).

Suy ra a = 1 và b = 2. Do đó b – a = 2 – 1 = 1.

Lời giải

a) Đây là đồ thị của hàm số y = 2x.

b) Điều kiện: −x2 + 3 > 0 Û \( - \sqrt 3 < x < \sqrt 3 \).

c) Có f(x) = 8x – 2 Û 2x = 23x – 6 Û x = 3x – 6 Û x = 3.

d) g(x) > log32x Û log3(−x2 + 3) > log32x \( \Leftrightarrow \left\{ \begin{array}{l}0 < x < \sqrt 3 \\ - {x^2} - 2x + 3 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}0 < x < \sqrt 3 \\ - 3 < x < 1\end{array} \right. \Leftrightarrow 0 < x < 1\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP