Câu hỏi:

19/08/2025 24 Lưu

Cho log23 = a; log252 = b. Khi đó:

a) \({\log _2}25 = \frac{1}{b}\).

b) \({\log _2}75 = a + \frac{1}{b}\).

c) log2(3.9) = 9a.

d) Nếu x; y là các số nguyên tố thỏa mãn \({\log _{48600}}25 = \frac{1}{{xab + yb + z}}\) thì x + y + z = 10.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \({\log _2}25 = \frac{1}{{{{\log }_{25}}2}} = \frac{1}{b}\).

b) \({\log _2}75 = {\log _2}\left( {25.3} \right) = {\log _2}25 + {\log _2}3 = a + \frac{1}{b}\).

c) log2(3.9) = log233 = 3log23 = 3a.

d) Ta có \({\log _{48600}}25 = \frac{1}{{{{\log }_{25}}48600}} = \frac{1}{{{{\log }_{25}}\left( {{3^5}{{.2}^3}.25} \right)}}\)\( = \frac{1}{{{{\log }_{25}}{3^5} + {{\log }_{25}}{2^3} + {{\log }_{25}}25}}\)

\( = \frac{1}{{5{{\log }_{25}}2.{{\log }_2}3 + 3{{\log }_{25}}2 + 1}}\)\( = \frac{1}{{5ab + 3b + 1}}\).

Suy ra x = 5; y = 3; z = 1. Do đó x + y + z = 9.

 Đáp án: a) Đúng;   b) Đúng;    c) Sai; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Điều kiện: 2x + 4 > 0 Û x > −2.

log2(2x + 4) ≥ 0 Û 2x + 4 ≥ 1 Û \(x \ge - \frac{3}{2}\).

Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình \(S = \left[ { - \frac{3}{2}; + \infty } \right)\).

Lời giải

Ta có \({2^{{x^2}}}{.3^{x + 1}} = 2\)\( \Leftrightarrow {\log _2}\left( {{2^{{x^2}}}{{.3}^{x + 1}}} \right) = {\log _2}2\)\( \Leftrightarrow {\log _2}{2^{{x^2}}} + {\log _2}{3^{x + 1}} = 1\)

\( \Leftrightarrow {x^2} + \left( {x + 1} \right){\log _2}3 - 1 = 0\) Û (x + 1)(x – 1 + log23) = 0 Û x = −1 hoặc x = 1 – log23.

Do đó tổng các nghiệm của phương trình là −log23 ≈ −1,6.

Trả lời: −1,6.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP