Câu hỏi:

19/08/2025 35 Lưu

Người ta dùng thuốc để khử khuẩn cho một thùng nước. Biết rằng nếu lúc đầu mỗi mililít nước chứa P0 vi khuẩn thì sau t giờ (kể từ khi cho thuốc vào thùng), số lượng vi khuẩn trong mỗi mililít nước là P = P0.10-αt với α là một hằng số dương nào đó. Biết rằng ban đầu mỗi mililít nước có 4000 vi khuẩn và sau 2 giờ, số lượng vi khuẩn trong mỗi mililít nước là 1000.

a) α nằm trong khoảng (1; 2).

b) Sau 3 giờ 30 phút thì lượng vi khuẩn trong mỗi mililít nước ít hơn 500.

c) Lượng vi khuẩn mất đi trong mỗi mililít trong khoảng thời gian từ 1 giờ đến 2,5 giờ tính từ lúc dùng thuốc thì lớn hơn 1200.

d) Lượng vi khuẩn sau khoảng 1,32 giờ sẽ bằng 40% lượng vi khuẩn ban đầu.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(P = {P_0}{.10^{ - \alpha t}}\) \( \Rightarrow 1000 = {4000.10^{ - 2\alpha }}\) \( \Rightarrow \alpha = - \frac{1}{2}\log \frac{1}{4} = \frac{1}{2}\log 4 \approx 0,31 \notin \left( {1;2} \right)\).

b) Ta có \(P = {P_0}{.10^{ - \alpha t}} < 500\)\( \Leftrightarrow {4000.10^{ - \alpha t}} < 500\)\( \Leftrightarrow {10^{ - \alpha t}} < \frac{1}{8}\)\( \Leftrightarrow - \alpha t < \log \frac{1}{8}\)\( \Leftrightarrow t > - \frac{1}{\alpha }\log \frac{1}{8}\)

\( \Leftrightarrow t > - \frac{1}{{\frac{1}{2}\log 4}}\log \frac{1}{8}\)\( \Leftrightarrow t > 3\).

c) Lượng vi khuẩn trong mỗi mililít nước sau 1 giờ là \({4000.10^{ - \frac{1}{2}\log 4.1}} = 2000\).

Lượng vi khuẩn trong mỗi mililít nước sau 2,5 giờ là \({4000.10^{ - \frac{1}{2}\log 4.2,5}} \approx 707\).

Lượng vi khuẩn mất đi khoảng 2000 – 707 = 1293 > 1200.

d) Ta có \[P = {P_0}{.10^{ - \alpha t}} = \frac{{40}}{{100}}.{P_0}\]\[ \Leftrightarrow {10^{ - \alpha t}} = \frac{2}{5}\]\[ \Leftrightarrow t = \frac{{\log \frac{2}{5}}}{{ - \alpha }} = \frac{{\log \frac{2}{5}}}{{ - \frac{1}{2}\log 4}} \approx 1,32\].

Đáp án: a) Sai;   b) Sai;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. (0; 6).                  
B. [0; 6).                  
C. (6; +∞).                              
D. (−∞; 6).

Lời giải

A

Điều kiện: x > 0

log(2x) < log(x + 6) Û 2x < x + 6 Û x < 6.

Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là (0; 6).

Câu 2

A. 2.                         
B. 1.                         
C. 0. 
D. 3.

Lời giải

B

Điều kiện \(\left\{ \begin{array}{l}6 + x > 0\\9x > 0\end{array} \right. \Leftrightarrow x > 0\).

log3(6 + x) + log39x – 5 = 0 Û log3[9x(x + 6)] = 5 Û 9x2 + 54x = 35 Û x2 + 6x – 27 = 0

Û x = 9 (loại) hoặc x = 3 (thỏa mãn).

Vậy phương trình có 1 nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. S = (−∞; 2).         
B. \(S = \left( {\frac{1}{2};2} \right)\).                       
C. S = (2; +∞).         
D. S = (−1; 2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. x = 3.                   
B. x = 5.                   
C. \(x = \frac{9}{2}\).                
D. \(x = \frac{7}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. T = 3.                  
B. T = 1.                   
C. T = 2. 
D. T = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP