Câu hỏi:

03/08/2025 4 Lưu

Cho hình thoi \(ABCD\) có tâm \(I\). Xét các khẳng định sau:

a) \(\overrightarrow {AB}  = \overrightarrow {BC} \);

b) \(\overrightarrow {AB}  = \overrightarrow {DC} \);

c) \(\overrightarrow {IA}  = \overrightarrow {ID} \);

d) \(\overrightarrow {IB}  = \overrightarrow {IA} \);

e) \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right|\);

f) \(2\left| {\overrightarrow {IA} } \right| = \left| {\overrightarrow {BD} } \right|\).

Hãy cho biết có bao nhiêu khẳng định đúng trong các khẳng định trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hãy cho biết có bao nhiêu khẳng định đúng trong các khẳng định trên? (ảnh 1)

Các khẳng định đúng: \(\overrightarrow {AB}  = \overrightarrow {DC} \); \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right|\).

Đáp án: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Vì \(H\) là trực tâm của \(\Delta ABC\) nên \(AH \bot BC\).

b) Sai. Gọi \(M,N\) lần lượt là trung điểm cạnh \(BC,AB\).

C (ảnh 1)

Do tam giác \(ABC\) đều nên \(AM,BN\) cũng là các đường cao của tam giác \(ABC\), vì vậy \(H\) vừa là trực tâm vừa là trọng tâm tam giác này.

Áp dụng định lí Pythagore cho \(\Delta ABM\), ta có: \(A{M^2} = A{B^2} - B{M^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow AM = \frac{{a\sqrt 3 }}{2}{\rm{. }}\)

Theo tính chất trọng tâm, ta có: \(AH = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).

c) Sai. Vì các vectơ \(\overrightarrow {HA} ,\overrightarrow {HB} ,\overrightarrow {HC} \) không cùng phương nên chúng không thể bằng nhau.

d) Đúng. Dễ thấy ba vectơ \(\overrightarrow {HA} ,\overrightarrow {HB} ,\overrightarrow {HC} \) có độ dài bằng nhau:

\(\left| {\overrightarrow {HA} } \right| = \left| {\overrightarrow {HB} } \right| = \left| {\overrightarrow {HC} } \right| = \frac{{a\sqrt 3 }}{3}{\rm{. }}\)

Lời giải

C (ảnh 1)

Các vectơ cùng phương với vectơ \(\overrightarrow {OB} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BE} ,\overrightarrow {EB} ,\overrightarrow {DC} ,\overrightarrow {CD} ,\overrightarrow {FA} ,\overrightarrow {AF} .\)

Đáp án: 6.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP