(H.5.10) Trong không gian Oxyz, sàn của một căn phòng có dạng hình tứ giác với bốn đỉnh \(O(0;0;0),A(2;0;0),B(2;3;0);C(0;2\sqrt 2 ;0)\). Bốn bức tường của căn phòng đều vuông góc với sàn.
a) Viết phương trình bốn mặt phẳng tương ứng chứa bốn bức tường đó.
b) Trong bốn mặt phẳng tương ứng chứa bốn bức tường đó, hãy chỉ ra những cặp mặt phẳng vuông góc với nhau.

(H.5.10) Trong không gian Oxyz, sàn của một căn phòng có dạng hình tứ giác với bốn đỉnh \(O(0;0;0),A(2;0;0),B(2;3;0);C(0;2\sqrt 2 ;0)\). Bốn bức tường của căn phòng đều vuông góc với sàn.
a) Viết phương trình bốn mặt phẳng tương ứng chứa bốn bức tường đó.
b) Trong bốn mặt phẳng tương ứng chứa bốn bức tường đó, hãy chỉ ra những cặp mặt phẳng vuông góc với nhau.

Quảng cáo
Trả lời:

a) Ta có \(\overrightarrow {AB} = (0;3;0),\overrightarrow {BC} = ( - 2;2\sqrt 2 - 3;0)\)
Sàn nhà nằm trong mặt phẳng Oxy có một vectơ pháp tuyến là \(\vec k = (0;0;1)\)
Suy ra mặt phẳng \({\rm{Oxy}}:{\rm{z}} = 0\).
Mặt phẳng bức tường \(({\rm{P}})\) chứa 2 điểm \({\rm{O}},{\rm{A}}\) chính là mặt phẳng Oxz : \({\rm{y}} = 0\).
Mặt phẳng bức tường \(({\rm{Q}})\) chứa 2 điểm \({\rm{O}},{\rm{C}}\) chính là mặt phẳng \({\rm{Oyz}}:{\rm{x}} = 0\).
Mặt phẳng bức tường ( a ) chứa 2 điểm \({\rm{A}},{\rm{B}}\) có vectơ pháp tuyến là \(\vec n = [\overrightarrow {AB} ,\vec k] = (3;0;0)\) có phương trình là: \(3({\rm{x}} - 2) = 0\) hay \({\rm{x}} - 2 = 0\).
Mặt phẳng bức tường \((\beta )\) chứa 2 điểm \({\rm{B}},{\rm{C}}\) có vectơ pháp tuyến
\(\overrightarrow {{n^\prime }} = [\overrightarrow {BC} ,\vec k] = \left( {\left| {\begin{array}{*{20}{c}}{2\sqrt 2 - 3}&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 2}\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&{2\sqrt 2 }\\0&0\end{array}} \right|} \right) = (2\sqrt 2 - 3;2;0)\)
có phương trình là: \((2\sqrt 2 - 3)x + 2(y - 2\sqrt 2 ) = 0{\rm{ hay }}(2\sqrt 2 - 3)x + 2y - 4\sqrt 2 = 0\)
b) Có bức tường (P) vuông góc với bức tường (Q).
Bức tường (P) vuông góc với bức tường (α).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì \(B(4k;3k;2k)\) thuộc mặt phẳng \((CBEF):z = 3\) nên \(2k = 3\), suy ra \(k = \frac{3}{2}\). Vậy \(B\left( {6;\frac{9}{2};3} \right)\).
b) Ta có: \(\overrightarrow {OA} = (50;0;0),\overrightarrow {OB} = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{50}\\3&6\end{array}} \right|;{\mkern 1mu} \left| {\begin{array}{*{20}{c}}{50}&0\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (0; - 150;225).\)
Suy ra \(\vec n = (0; - 2;3)\) là một vectơ pháp tuyến của mặt phẳng \((AOBC)\).
Vậy phương trình mặt phẳng \((AOBC)\) là: \(0 \cdot (x - 0) + ( - 2) \cdot (y - 0) + 3 \cdot (z - 0) = 0 \Leftrightarrow 2y - 3z = 0.\)
c) Ta có:\(\overrightarrow {OD} = (0;20;0),\overrightarrow {OB} = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OD} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}{20}&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{l}}0&0\\3&6\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{20}\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (60;0; - 120){\rm{. }}\)
Suy ra \(\vec u = (1;0; - 2)\) là một vectơ pháp tuyến của mặt phẳng \((DOBE)\).
Vậy phương trình mặt phẳng \((DOBE)\) là: \(1 \cdot (x - 0) + 0 \cdot (y - 0) + ( - 2) \cdot (z - 0) = 0 \Leftrightarrow x - 2z = 0.\)
d) Một vec tơ pháp tuyến của mặt phẳng \((AOBC)\) và \((DOBE)\) lần lượt là: \(\vec p = (0;2; - 3)\) và \(\vec q = ( - 1;0;2)\).
Lời giải
a) Ta có:\(\overrightarrow {AB} = (2;2;0),\overrightarrow {AC} = (4;2; - 0,5)\) nên \([\overrightarrow {AB} ,\overrightarrow {AC} ] = \left( {\left| {\begin{array}{*{20}{c}}2&0\\2&{ - 0,5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&2\\{ - 0,5}&4\end{array}} \right|;\left| {\begin{array}{*{20}{l}}2&2\\4&2\end{array}} \right|} \right) = ( - 1;1; - 4)\)
là một vectơ pháp tuyến của mặt phẳng \((ABC)\).
Vậy phương trình mặt phẳng \((ABC)\) là: \(( - 1) \cdot (x - 2) + 1 \cdot (y - 1) + ( - 4) \cdot (z - 3) = 0 \Leftrightarrow x - y + 4z - 13 = 0.{\rm{ }}\)
b) Vì\(4 - 0 + 4 \cdot 2,8 - 13 = 2,2 \ne 0\) nên điểm \(D(4;0;2,8)\) không thuộc mặt phẳng \((ABC)\). Vậy bốn điểm A, B, C, D không đồng phẳng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




