Câu hỏi:

05/08/2025 9 Lưu

Cho tứ giác \(ABCD\). Gọi \(M,N,P,Q\) lần lượt là trung điểm \(AB,BC\),\(CD,DA\).

a) \(MN\) là đường trung bình của tam giác \(ACD\).

b) \(PQ = \frac{1}{2}AC\).

c) Tứ giác \(MNPQ\) là hình thang.

d) \(\overrightarrow {MN}  = \overrightarrow {QP} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c (ảnh 1)

a) Sai. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(\left\{ \begin{array}{l}MN\parallel AC\\MN = \frac{1}{2}AC\end{array} \right.\left( 1 \right)\).

b) Đúng. Tương tự, \(PQ\) là đường trung bình của tam giác \(ACD\) nên: \(\left\{ \begin{array}{l}PQ\parallel AC\\PQ = \frac{1}{2}AC\end{array} \right.\left( 2 \right)\).

c) Sai. Từ (1), (2) suy ra \(MN\,{\rm{//}} = \,PQ\) nên tứ giác \(MNPQ\) là hình bình hành.

d) Đúng. Vì tứ giác \(MNPQ\) là hình bình hành nên \(\overrightarrow {MN}  = \overrightarrow {QP} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

Các vectơ cùng phương với vectơ \(\overrightarrow {OB} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BE} ,\overrightarrow {EB} ,\overrightarrow {DC} ,\overrightarrow {CD} ,\overrightarrow {FA} ,\overrightarrow {AF} .\)

Đáp án: 6.

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(BB'\) là đường kính đường tròn ngoại tiếp tam giác \(ABC\) nên \(\widehat {BCB'} = 90^\circ \) \( \Rightarrow B'C \bot BC\).

b) Sai. Ta có \(AH \bot BC\), suy ra \(B'C{\rm{//}}AH\) (1). Mà \(A,B,\,H\) không thẳng hàng nên \[B'C\]  không song song với \(AB\).

c) Đúng. Tương tự: \(\widehat {BAB'} = 90^\circ \) hay \(AB' \bot AB\) mà \(CH \bot AB\) nên \(CH\,{\rm{//}}\,AB'\,\,(2)\).

Từ (1) và (2) suy ra tứ giác \(AB'CH\) là hình bình hành.

d) Đúng. Vì tứ giác \(AB'CH\) là hình bình hành nên \(\overrightarrow {AH}  = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'}  = \overrightarrow {HC} \).

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP