Cho \(\Delta ABC\) có trực tâm \(H\) và \(O\) là tâm đường tròn ngoại tiếp tam giác. Gọi \(B'\) là điểm đối xứng của \(B\) qua \(O\).
a) \(B'C \bot BC\).
b) \(B'C{\rm{//}}AB\).
c) Tứ giác \(AB'CH\) là hình bình hành.
d) \(\overrightarrow {AH} = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'} = \overrightarrow {HC} \).
Cho \(\Delta ABC\) có trực tâm \(H\) và \(O\) là tâm đường tròn ngoại tiếp tam giác. Gọi \(B'\) là điểm đối xứng của \(B\) qua \(O\).
a) \(B'C \bot BC\).
b) \(B'C{\rm{//}}AB\).
c) Tứ giác \(AB'CH\) là hình bình hành.
d) \(\overrightarrow {AH} = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'} = \overrightarrow {HC} \).
Quảng cáo
Trả lời:

a) Đúng. Ta có \(BB'\) là đường kính đường tròn ngoại tiếp tam giác \(ABC\) nên \(\widehat {BCB'} = 90^\circ \) \( \Rightarrow B'C \bot BC\).
b) Sai. Ta có \(AH \bot BC\), suy ra \(B'C{\rm{//}}AH\) (1). Mà \(A,B,\,H\) không thẳng hàng nên \[B'C\] không song song với \(AB\).
c) Đúng. Tương tự: \(\widehat {BAB'} = 90^\circ \) hay \(AB' \bot AB\) mà \(CH \bot AB\) nên \(CH\,{\rm{//}}\,AB'\,\,(2)\).
Từ (1) và (2) suy ra tứ giác \(AB'CH\) là hình bình hành.
d) Đúng. Vì tứ giác \(AB'CH\) là hình bình hành nên \(\overrightarrow {AH} = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'} = \overrightarrow {HC} \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đáp án đúng là: C
Ta có hai vectơ đó là \(\overrightarrow {AB} \) và \(\overrightarrow {BA} \).
Lời giải

Các vectơ cùng phương với vectơ \(\overrightarrow {OB} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BE} ,\overrightarrow {EB} ,\overrightarrow {DC} ,\overrightarrow {CD} ,\overrightarrow {FA} ,\overrightarrow {AF} .\)
Đáp án: 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.