Câu hỏi:

07/08/2025 7 Lưu

Cho hình thoi \(ABCD\) cạnh \(a\), có \(\widehat {BAD} = 60^\circ \). Gọi \(O\) là giao điểm hai đường chéo.

a) \(AO = \frac{{a\sqrt 3 }}{2}\).

b) \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = a\sqrt 2 \).

c) \(\left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = a\sqrt 3 \).

d) Ba lực \(\overrightarrow {{F_1}}  = \overrightarrow {AB,} \,\,\overrightarrow {{F_2}}  = \overrightarrow {AD,} \,\,\overrightarrow {{F_3}} \) cùng tác động vào một vật đặt tại điểm A và ở trạng thái cân bằng biết \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 2\sqrt 3 \,{\rm{N}}\). Khi đó độ lớn của lực \(\overrightarrow {{F_3}} \) bằng \(6\,{\rm{N}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c (ảnh 1)

a) Đúng. Ta có \(\left\{ \begin{array}{l}AB = AD\\\widehat {BAD} = 60^\circ \end{array} \right. \Rightarrow \Delta ABD\) đều cạnh a \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2}\).

b) Sai. Ta có \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = 2AO\)\( = a\sqrt 3 \).

c) Đúng. Ta có \(\left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\sqrt 3 \).

d) Đúng. Đặt \(\overrightarrow {AC}  = \overrightarrow F \), ta có \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \) và \(\left| {\overrightarrow F } \right| = 2\sqrt 3  \cdot \sqrt 3  = 6\,\,{\rm{(N)}}\).

Do A ở vị trí cân bằng nên hai lực \(\overrightarrow F \) và \(\overrightarrow {{F_3}} \) có cùng cường độ và ngược hướng.

Vậy cường độ lực \(\overrightarrow {{F_3}} \) bằng \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow F } \right| = 6\,\,{\rm{(N)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).

b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB}  = \overrightarrow {CN} \).

c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM}  - \overrightarrow {CN}  = \overrightarrow {NM} \). 

d) Đúng. Ta có \(\left| {\overrightarrow {CM}  - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM}  - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).

Lời giải

Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0 \).

Suy ra \[\overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\].

c (ảnh 2)

Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}}  - \overrightarrow {{F_2}}  =  - \overrightarrow {MA}  - \overrightarrow {MB}  =  - \overrightarrow {MN} \].

Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).

Đáp án: 25.