Câu hỏi:

07/08/2025 7 Lưu

Cho ba lực \[\overrightarrow {{F_1}}  = \overrightarrow {MA} \], \[\overrightarrow {{F_2}}  = \overrightarrow {MB} \], \[\overrightarrow {{F_3}}  = \overrightarrow {MC} \] cùng tác động vào một vật tại điểm \[M\] và vật đứng yên. Cho biết cường độ của \[\overrightarrow {{F_1}} \], \[\overrightarrow {{F_2}} \] đều bằng \[25\,{\rm{N}}\] và \[\widehat {AMB} = 60^\circ \]. Khi đó cường độ lực của \[\overrightarrow {F_3^{}} \]bằng \(a\sqrt 3 \) N. Xác định giá trị của \(a\).

c (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0 \).

Suy ra \[\overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\].

c (ảnh 2)

Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}}  - \overrightarrow {{F_2}}  =  - \overrightarrow {MA}  - \overrightarrow {MB}  =  - \overrightarrow {MN} \].

Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).

Đáp án: 25.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

x (ảnh 1)

Ta có \(\overrightarrow {CM}  - \overrightarrow {EM}  = \overrightarrow {CM}  + \overrightarrow {ME}  = \overrightarrow {CE} \).

Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).

Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).

Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).

Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).

Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).

Từ (5) và (6) suy ra \(CE = BF = 8\).

Vậy \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).

Đáp án: 8.

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).

b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB}  = \overrightarrow {CN} \).

c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM}  - \overrightarrow {CN}  = \overrightarrow {NM} \). 

d) Đúng. Ta có \(\left| {\overrightarrow {CM}  - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM}  - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).