Câu hỏi:

07/08/2025 22 Lưu

Cho \(\Delta ABC\) nội tiếp đường tròn tâm \(O,H\) là trực tâm tam giác, \(D\) là điểm đối xứng của \(A\) qua \(O\).

a) \(BD{\rm{//}}CH\).

b) \(CD{\rm{//}}BH\).

a) \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 3\overrightarrow {HO} \).

b) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 3\overrightarrow {OH} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c (ảnh 1)

a) Đúng. Xét tam giác \(ABD\) nội tiếp đường tròn đường kính \(AD\) nên \(AB \bot BD\); mặt khác \(AB \bot CH\) nên \(BD{\rm{//}}CH\) (1).

b) Đúng. Tương tự, tam giác \(ACD\) nội tiếp đường tròn đường kính \(AD\) nên \(AC \bot CD\); mặt khác \(AC \bot BH\) nên \(CD{\rm{//}}BH\) (2).

c) Sai. Từ (1) và (2) suy ra \(BDCH\) là hình bình hành.

Khi đó, \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HA}  + \overrightarrow {HD}  = 2\overrightarrow {HO} \) (vì \(O\) là trung điểm \(AD\)).

d) Sai. Ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {OH}  + \overrightarrow {HB}  + \overrightarrow {OH}  + \overrightarrow {HC} \)

\( = 3\overrightarrow {OH}  + \left( {\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC} } \right) = 3\overrightarrow {OH}  + 2\overrightarrow {HO}  = \overrightarrow {OH} {\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. \(AC = 2AO\) và vectơ \(\overrightarrow {AC} , \overrightarrow {AO} \) là hai vectơ cùng hướng nên \(\overrightarrow {AC}  = 2\overrightarrow {AO} \).

b) Đúng. Theo quy tắc hình bình hành ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

Mặt khác \(\overrightarrow {AC}  = 2\overrightarrow {AO} \). Vậy \(\overrightarrow {AB}  + \overrightarrow {AD}  = 2\overrightarrow {AO} \).

c) Đúng. \(O\) là trung điểm của \(AC\) và \(BD\) nên \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 , \overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

d) Sai.

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow {GO}  + \overrightarrow {OA}  + \overrightarrow {GO}  + \overrightarrow {OB}  + \overrightarrow {GO}  + \overrightarrow {OC}  + \overrightarrow {GO}  + \overrightarrow {OD} \)

\( = 4\overrightarrow {GO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {GO} \).

Nên suy ra \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = 4\left| {\overrightarrow {GO} } \right| = 4GO\).

Vì hình vuông \(ABCD\) có tâm \(O\) cạnh \(a\), \(G\) là trọng tâm tam giác \(ABC\) nên \(GO = \frac{1}{3}BO = \frac{1}{6}BD = \frac{{a\sqrt 2 }}{6}\).

Vậy \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = \frac{{2a\sqrt 2 }}{3}\).

Câu 2

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM}  =  - 4\overrightarrow a  - 3\overrightarrow a  =  - 7\overrightarrow a \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP