Trên mặt phẳng toạ độ \(Oxy\), xác định vị trí tương đối của điểm \(A( - 3; - 4)\) và đường tròn tâm là gốc toạ độ \(O\), bán kính \(R = 3\).
Quảng cáo
Trả lời:

Chọn A
Ta có \(OA = \sqrt {{{( - 3 - 0)}^2} + {{( - 4 - 0)}^2}} = 5 > 3 = R\) nên \(A\) nằm bên ngoài đường tròn tâm \(O\) bán kính \(R = 3\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].
\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];
\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].
Do đó số đo của cung nhỏ bằng: \[\widehat {AOM} = 160^\circ \].
Lời giải
Chọn B
Ta có: \[\widehat {ACB} = 60^\circ \] \[ \Rightarrow \widehat {AOB} = 120^\circ \].
Kẻ \[OH \bot AB\] \[ \Rightarrow HA = HB = \frac{a}{2}\] (Quan hệ vuông góc giữa đường kính và dây).
\[\Delta AOB\] cân tại \[O\]; \[OH\] là đường cao nên \[OH\] là đường phân giác của \[\widehat {AOB}\]. Do đó: \[\widehat {AOH} = 60^\circ \].
Trong tam giác vuông \[AOH\] có: \[OA = \frac{{AH}}{{\sin \,\widehat {AOH}}}\]\[ = \frac{a}{{2\sin \,60^\circ }}\]\[ = \frac{{a\sqrt 3 }}{3}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.