Câu hỏi:

14/08/2025 137 Lưu

Cho nửa đường tròn \(\left( {{\rm{O}}\,{\rm{;}}\,{\rm{R}}} \right)\) đường kính \(AB\), điểm \(C\) di chuyển trên nửa đường tròn, khi đó tổng hai dây cung \(CA + CB\) lớn nhất là bao nhiêu?

A. \(3\sqrt 2 R\).

B. \(2\sqrt 2 R\).

C. \(2R\).

D. \(\sqrt 3 R\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

. Cho nửa đường tròn (O;R) đường kính AB, điểm C di chuyển trên nửa đường tròn, khi đó tổng hai dây cung CA + CB lớn nhất là bao nhiêu? (ảnh 1)

Điểm \(C\) thuộc nửa đường tròn đường kính \(AB\) nên \(\widehat {ACB} = 90^\circ \). Áp dụng định lý Pythagore vào tam giác vuông \(ACB\), ta có

\(A{B^2} = C{A^2} + C{B^2}\)

Mặt khác, theo bất đẳng thức bunhiacopxki

\(2A{B^2} = \left( {{1^2} + {1^2}} \right)\left( {C{A^2} + C{B^2}} \right) \ge {\left( {CA + CB} \right)^2}\)

\( \Rightarrow CA + CB \le AB.\sqrt 2 \Rightarrow CA + CB \le 2\sqrt 2 .R\)

Dấu \(' = '\) xảy ra khi \(CA = CB\), hay \(C\) là điểm chính giữa của .

\( \Rightarrow {\left( {CA + CB} \right)_{{\rm{max}}}} = 2\sqrt 2 R\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Trên đường tròn ( O ) lấy hai điểm A và B sao cho góc AOB = 80 độ. Vẽ dây AM vuông góc với bán kính OB tại H. Số đo cung nhỏ  (ảnh 1)

\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].

\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];

\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].

Do đó số đo của cung nhỏ AM bằng: \[\widehat {AOM} = 160^\circ \].

Câu 2

A. sđAB=120°, sđCD=80°.  

B. sđAB=130°, sđCD=100°.

C. sđAB=115°, sđCD=80°.

D. sđAB=120°, sđCD=100°.

Lời giải

Chọn D

Vì \[\Delta OAB\]cân tại \[{\rm{O}}\] \[\left( {OA = OB = R} \right)\]\[ \Rightarrow \widehat {OBA} = \widehat {OAB} = 30^\circ \]\[ \Rightarrow \widehat {BOA} = 180^\circ - \widehat {OBA} - \widehat {OAB}\]

\[\widehat {BOA} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \] suy ra số đo cung nhỏ bằng: \[\widehat {BOA} = 120^\circ \].

Vì \[\Delta OCD\]cân tại \[O\] \[\left( {OC = OD = R} \right)\]\[ \Rightarrow \widehat {OCD} = \widehat {ODC} = 40^\circ \]\[ \Rightarrow \widehat {COD} = 180^\circ - \widehat {OCD} - \widehat {ODC}\]

\[\widehat {COD} = 180^\circ - 40^\circ - 40^\circ = 100^\circ \] suy ra số đo cung nhỏ CD bằng: \[\widehat {COD} = 100^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP