Câu hỏi:

13/08/2025 42 Lưu

Cho đường tròn \(\left( O \right)\) và dây \(AB\), \(M\) là điểm chính giữa của cung nhỏ \(AB\). Lấy điểm \(C\) thuộc đoạn \(AB\), đường thẳng \(MC\) cắt \(\left( O \right)\) tại \(D\). Cho \(MC = 9\,cm\), \(MD = 16\,cm\), độ dài dây cung \(MA\) là

A. \(25\,cm\).

B. \(20\,cm\).

C. \(12\,cm\).

D. \(10\,cm\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cho đường tròn (O) và dây AB, M)là điểm chính giữa của cung nhỏ AB. Lấy điểm C thuộc đoạn AB, đường thẳng MC cắt (O) tại D. Cho (ảnh 1)

Vì \(M\) là điểm chính giữa của cung nhỏ \(AB\) nên

\( \Rightarrow \,\widehat {ADM} = \widehat {MAB}\) hay \(\,\widehat {ADM} = \widehat {MAC}\)

\( \Rightarrow \,\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}} \Rightarrow M{A^2} = MC.MD = 9.16 = 144\)

\( \Rightarrow \,MA = 12cm\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Trên đường tròn ( O ) lấy hai điểm A và B sao cho góc AOB = 80 độ. Vẽ dây AM vuông góc với bán kính OB tại H. Số đo cung nhỏ  (ảnh 1)

\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].

\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];

\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].

Do đó số đo của cung nhỏ AM bằng: \[\widehat {AOM} = 160^\circ \].

Câu 2

A. sđAB=120°, sđCD=80°.  

B. sđAB=130°, sđCD=100°.

C. sđAB=115°, sđCD=80°.

D. sđAB=120°, sđCD=100°.

Lời giải

Chọn D

Vì \[\Delta OAB\]cân tại \[{\rm{O}}\] \[\left( {OA = OB = R} \right)\]\[ \Rightarrow \widehat {OBA} = \widehat {OAB} = 30^\circ \]\[ \Rightarrow \widehat {BOA} = 180^\circ - \widehat {OBA} - \widehat {OAB}\]

\[\widehat {BOA} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \] suy ra số đo cung nhỏ bằng: \[\widehat {BOA} = 120^\circ \].

Vì \[\Delta OCD\]cân tại \[O\] \[\left( {OC = OD = R} \right)\]\[ \Rightarrow \widehat {OCD} = \widehat {ODC} = 40^\circ \]\[ \Rightarrow \widehat {COD} = 180^\circ - \widehat {OCD} - \widehat {ODC}\]

\[\widehat {COD} = 180^\circ - 40^\circ - 40^\circ = 100^\circ \] suy ra số đo cung nhỏ CD bằng: \[\widehat {COD} = 100^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP