Câu hỏi:

14/08/2025 175 Lưu

Cho nửa đường tròn \[\left( O \right)\] đường kính \[AB = 2R\]. Lấy \[M\] là điểm chính giữa cung \[AB\], hai điểm \[C\] và \[D\] di chuyển trên cung \[MA,MB\] sao cho \[CM//AD\]. Hỏi độ dài cạnh \[CD\] bằng bao nhiêu?

A. \[\frac{{2R}}{3}\].

B. \[R\sqrt 3 \].

C. \[\frac{{R\sqrt 3 }}{2}\].

D. \[R\sqrt 2 \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Cho nửa đường tròn ( O) đường kính AB = 2R. Lấy M là điểm chính giữa cung AB, hai điểm C và D di chuyển trên cung MA,MB sao cho (ảnh 1)

\[M\] là điểm chính giữa của cung \[AB\] nên sđ AM=90°.

Do \[MC//AD\] nên

AC=MDCD=CM+MD=CM+CA=MA

\[ \Rightarrow \widehat {COD} = 90^\circ \] (góc ở tâm chắn cung \[CD\])

\[ \Rightarrow \Delta COD\] vuông cân tại \[O \Rightarrow CD = CO\sqrt 2 = R\sqrt 2 \].

Với bài tập này ta cũng có thể lí luận \[ACMD\] là hình thang cân nên \[CD = AM = R\sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Trên đường tròn ( O ) lấy hai điểm A và B sao cho góc AOB = 80 độ. Vẽ dây AM vuông góc với bán kính OB tại H. Số đo cung nhỏ  (ảnh 1)

\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].

\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];

\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].

Do đó số đo của cung nhỏ AM bằng: \[\widehat {AOM} = 160^\circ \].

Câu 2

A. sđAB=120°, sđCD=80°.  

B. sđAB=130°, sđCD=100°.

C. sđAB=115°, sđCD=80°.

D. sđAB=120°, sđCD=100°.

Lời giải

Chọn D

Vì \[\Delta OAB\]cân tại \[{\rm{O}}\] \[\left( {OA = OB = R} \right)\]\[ \Rightarrow \widehat {OBA} = \widehat {OAB} = 30^\circ \]\[ \Rightarrow \widehat {BOA} = 180^\circ - \widehat {OBA} - \widehat {OAB}\]

\[\widehat {BOA} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \] suy ra số đo cung nhỏ bằng: \[\widehat {BOA} = 120^\circ \].

Vì \[\Delta OCD\]cân tại \[O\] \[\left( {OC = OD = R} \right)\]\[ \Rightarrow \widehat {OCD} = \widehat {ODC} = 40^\circ \]\[ \Rightarrow \widehat {COD} = 180^\circ - \widehat {OCD} - \widehat {ODC}\]

\[\widehat {COD} = 180^\circ - 40^\circ - 40^\circ = 100^\circ \] suy ra số đo cung nhỏ CD bằng: \[\widehat {COD} = 100^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP