Câu hỏi:

14/08/2025 33 Lưu

Một hình tròn có chu vi \[20\,{\rm{cm}}\]. Diện tích của hình tròn đó xấp xỉ bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi \(R\) là bán kính của hình tròn.

Có \(R = \frac{C}{{2\pi }} = \frac{{20}}{{2\pi }} = \frac{{10}}{\pi }\,({\rm{cm}})\)

Diện tích hình tròn là \[S = \pi {R^2} = \pi {\left( {\frac{{10}}{\pi }} \right)^2} = \frac{{100}}{\pi } \approx 31,8\,({\rm{c}}{{\rm{m}}^{\rm{2}}})\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Trên đường tròn ( O ) lấy hai điểm A và B sao cho góc AOB = 80 độ. Vẽ dây AM vuông góc với bán kính OB tại H. Số đo cung nhỏ  (ảnh 1)

\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].

\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];

\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].

Do đó số đo của cung nhỏ AM bằng: \[\widehat {AOM} = 160^\circ \].

Lời giải

Chọn C

Số đo cung nhỏ \[AB\] bằng \[90^\circ \] suy ra \[\widehat {AOB} = 90^\circ \].

Áp dụng Pythagore vào tam giác vuông cân \[OAB\] ta có: \[AB = \sqrt {O{A^2} + O{B^2}} = R\sqrt 2 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP