Quảng cáo
Trả lời:

Chọn C
Xét đường tròn \(\left( O \right)\), cung \(AB\) có số đo \(n = 90^\circ \). Ta có
\({S_{vp}} = {S_{q\,AOB}} - {S_{AOB}} = \frac{{\pi {R^2}n}}{{360}} - \frac{{OA.OB}}{2} = \frac{{\pi {R^2}90}}{{360}} - \frac{{R.R}}{2} = \frac{{\pi {R^2}}}{4} - \frac{{{R^2}}}{2} = \frac{{\left( {\pi - 2} \right){R^2}}}{4}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].
\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];
\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].
Do đó số đo của cung nhỏ bằng: \[\widehat {AOM} = 160^\circ \].
Lời giải
Chọn C
Số đo cung nhỏ \[AB\] bằng \[90^\circ \] suy ra \[\widehat {AOB} = 90^\circ \].
Áp dụng Pythagore vào tam giác vuông cân \[OAB\] ta có: \[AB = \sqrt {O{A^2} + O{B^2}} = R\sqrt 2 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.