Cung \[AB\] của một đường tròn bán kính \[R\] có độ dài bằng \(\frac{{\pi R}}{4}\). Số đo cung \[AB\] bằng
Quảng cáo
Trả lời:
Chọn B
Gọi số đo cung \[AB\] là \[n^\circ \]. Khi đó độ dài cung \[AB\] bằng \[\frac{{\pi Rn}}{{180}}\].
Theo giả thiết, ta có \[\frac{{\pi Rn}}{{180}} = \frac{{\pi R}}{4}\] hay \[\frac{n}{{180}} = \frac{1}{4}\] nên \[n = 45\].
Vậy số đo cung \[AB\] bằng \(45^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].
\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];
\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].
Do đó số đo của cung nhỏ bằng: \[\widehat {AOM} = 160^\circ \].
Lời giải
Chọn D
\[M\] là điểm chính giữa của cung \[AB\] nên .
Do \[MC//AD\] nên
\[ \Rightarrow \widehat {COD} = 90^\circ \] (góc ở tâm chắn cung \[CD\])
\[ \Rightarrow \Delta COD\] vuông cân tại \[O \Rightarrow CD = CO\sqrt 2 = R\sqrt 2 \].
Với bài tập này ta cũng có thể lí luận \[ACMD\] là hình thang cân nên \[CD = AM = R\sqrt 2 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.