Câu hỏi:

14/08/2025 47 Lưu

Chọn phát biểu sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

 A đúng

B đúng

C sai, vì độ dài cung \({n^o}\)của đường tròn bán kính \(R\) là \(l = \frac{{\pi Rn}}{{180}}\) tỉ lệ thuận với \(n\), tức là tỉ lệ thuận với số đo góc của cung.

D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Trên đường tròn ( O ) lấy hai điểm A và B sao cho góc AOB = 80 độ. Vẽ dây AM vuông góc với bán kính OB tại H. Số đo cung nhỏ  (ảnh 1)

\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].

\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];

\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].

Do đó số đo của cung nhỏ AM bằng: \[\widehat {AOM} = 160^\circ \].

Lời giải

Chọn B

Cho tam giác ABC nội tiếp trong đường tròn ( O ). Biết AB = a; góc ACB = 60độ. Bán kính của  (O) là (ảnh 1)

Ta có: \[\widehat {ACB} = 60^\circ \] \[ \Rightarrow \widehat {AOB} = 120^\circ \].

Kẻ \[OH \bot AB\] \[ \Rightarrow HA = HB = \frac{a}{2}\] (Quan hệ vuông góc giữa đường kính và dây).

\[\Delta AOB\] cân tại \[O\]; \[OH\] là đường cao nên \[OH\] là đường phân giác của \[\widehat {AOB}\]. Do đó: \[\widehat {AOH} = 60^\circ \].

Trong tam giác vuông \[AOH\] có: \[OA = \frac{{AH}}{{\sin \,\widehat {AOH}}}\]\[ = \frac{a}{{2\sin \,60^\circ }}\]\[ = \frac{{a\sqrt 3 }}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP