Câu hỏi:

14/08/2025 49 Lưu

Cho tam giác \[ABC\] cân tại \(A.\) Các đường cao \(AH\) và \(BK\)cắt nhau ở \(I,\) vẽ đường tròn tâm \(O\) đường kính \(AI.\) Khi đó ta có

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Cho tam giác \[ABC\] cân tại \(A.\) Các đường cao \(AH\) và \(BK\)cắt nhau ở \(I,\) vẽ đường tròn tâm \(O\) đường kính \(AI.\) Khi đó ta có (ảnh 1)

Do \[\Delta ABC\] cân tại \[A\] (gt) nên đường cao\(AH\) đồng thời là trung tuyến. Suy ra \[BH = HC\].

Do \(BK\) là đường cao của \[\Delta ABC\]. Suy ra \(BK \bot AC\).

\[\Delta KBC\]vuông tại \(K\) có \(H\) là trung điểm của \(BC\) nên \(KH = BH = HC = \frac{1}{2}BC\).

Suy ra \[\Delta KBH\] cân tại \[H\] nên \(\widehat {KBH} = \widehat {HKB}\) \((1)\).

\(K \in (O)\)đường kính \(AI\) nên \(KO = IO = R\). Suy ra \[\Delta KOI\] cân tại \[O\] nên \(\widehat {OKI} = \widehat {OIK}\) \((2)\).

Từ \((1)\)và \((2)\) suy ra \(\widehat {OKB} + \widehat {HKB} = \widehat {OIK} + \widehat {IBH} = \widehat {HIB} + \widehat {IBH} = 90^\circ \)

Suy ra \(HK \bot OK\) tại \(K\).

Do đó \(HK\)là tiếp tuyến của \((O)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B

Vì \(A( - 2\,;\,3)\) nên khoảng cách từ \(A\) đến trục hoành là \({d_1} = \,|{y_A}|\, = 3\), khoảng cách từ \(A\) đến trục tung là \({d_2} = \,|{x_A}|\, = 2\).

Nhận thấy \({d_2} = R( = 2)\) nên trục tung tiếp xúc với đường tròn \((A;2)\).

Và \({d_2} = 3 > 2 = R\) nên trục hoành không cắt đường tròn \((A;2)\).

Lời giải

Chọn B

Vì tam giác \(ABC\) cân tại \(A\) có \(O\) là tâm đường tròn ngoại tiếp nên đường thẳng \(AO \bot BC\).

Lại có \(AO \bot AE\) (tính chất tiếp tuyến) nên \(AE{\rm{//}}BC\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP