Câu hỏi:

14/08/2025 16 Lưu

Cho \(\left( {O\;{\rm{;}}\;R} \right)\). Từ điểm \(M\) ở ngoài đường tròn vẽ tiếp tuyến \(MA,MB\) đến đường tròn. Đường trung trực của đường kính \(BC\) cắt đường thẳng \(AC\) tại \(K\). Tính độ dài đoạn thẳng \(MK\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Cho \(\left( {O\;{\rm{;}}\;R} \right)\). Từ điểm \(M\) ở ngoài đường tròn vẽ tiếp tuyến \(MA,MB\) đến đường tròn. Đường trung trực của đường kính \(BC\) cắt đường thẳng \(AC\) tại \(K\). Tính (ảnh 1)

Xét đường tròn \(\left( {O\;{\rm{;}}\;R} \right)\) có \(MA,\;MB\) là tiếp tuyến

Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) \((1)\)

 \(\Delta OAC\) có \[OA = OC\] suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)

\(\widehat {AOB} = \widehat {OCA} + \widehat {OAC}\) (tính chất góc ngoài của tam giác)

Nên \(\widehat {OAC} = \widehat {OCA} = \frac{1}{2}\widehat {AOB}\) \((2)\)

Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\)

 Mà \(\widehat {OCA}\), \(\widehat {BOM}\) ở vị trí đồng vị

Nên \(CK\,{\rm{//}}\,OM\) suy ra\(\widehat {MOK} = \widehat {CKO}\) (so le trong).

Chứng minh\(\left( {O\;{\rm{;}}\;R} \right)\) \(\Delta OAM = \Delta OCK\) (c.g.c) suy ra \(CK = OM\) (hai cạnh tương ứng).

Chứng minh \(\Delta KMO = \Delta OCK\) (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc tương ứng).

Mà \(\widehat {COK} = 90^\circ \)(\(KO\)là trung trực của \(BC\)) suy ra \(\widehat {OKM} = 90^\circ \).

Tứ giác \[{\rm{O}}BMK\] có:

+ \(\widehat {MBO} = 90^\circ \) (\(MB\) là tiếp tuyến của \(\left( {O\;{\rm{;}}\;R} \right)\)).

+ \(\widehat {BOK} = 90^\circ \)(\(KO\) là trung trực của \(BC\)).

+ \(\widehat {OKM} = 90^\circ \) (cmt).

Do đó \(OBMK\) là hình chữ nhật suy ra \(MK = OB = R\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Xét \((O)\) có \(OB = OC = OD\) nên \(BO = \frac{{DC}}{2}\) hay \(\Delta BDC\) vuông tại \(B\) suy ra \[BD \bot AC\].

\(\Delta ABD = \Delta CBD\) nên \(DA = DC = 2R\).

Lời giải

Chọn B

Xét \((O)\) có \(MA = MB\) (tính chất hai tiếp tuyến cắt nhau) mà \(\widehat {AMB} = 60^\circ \) nên \(\Delta MAB\) đều suy ra chu vi \(\Delta MAB\) là \(MA + MB + AB = 3AB\) suy ra \(AB = 8cm = MA = MB\).

Lại có \[\widehat {AMO} = \frac{1}{2}\widehat {AMB} = 30^\circ \] (tính chất 2 tiếp tuyến cắt nhau)

Xét tam giác vuông \(MAO\) có \(\tan \widehat {AMO} = \frac{{OA}}{{MA}} \Rightarrow OA = MA.\tan 30^\circ = \frac{{8\sqrt 3 }}{3}\,cm\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP