Cho tam giác \(ABC\) cân tại \(A\) nội tiếp đường tròn \((O)\). Gọi \(D\) là trung điểm cạnh \(AC\), tiếp tuyến của đường tròn \((O)\) tại \(A\) cắt tia \(BD\) tại \(E\). Chọn khẳng định đúng.
Quảng cáo
Trả lời:

Chọn B
Vì tam giác \(ABC\) cân tại \(A\) có \(O\) là tâm đường tròn ngoại tiếp nên đường thẳng \(AO \bot BC\).
Lại có \(AO \bot AE\) (tính chất tiếp tuyến) nên \(AE{\rm{//}}BC\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Vì \(A( - 2\,;\,3)\) nên khoảng cách từ \(A\) đến trục hoành là \({d_1} = \,|{y_A}|\, = 3\), khoảng cách từ \(A\) đến trục tung là \({d_2} = \,|{x_A}|\, = 2\).
Nhận thấy \({d_2} = R( = 2)\) nên trục tung tiếp xúc với đường tròn \((A;2)\).
Và \({d_2} = 3 > 2 = R\) nên trục hoành không cắt đường tròn \((A;2)\).
Lời giải
Chọn B
Đáp án B: sai, vì khi \(d = R\) thì đường thẳng \(a\) và đường tròn \(\left( {O;R} \right)\) tiếp xúc nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.