Cho đoạn \[OO'\] và điểm \[A\] nằm trên đoạn \[OO'\] sao cho \[OA = 2O'A\]. Đường tròn \[(O)\] bán kính \[OA\] và đường tròn \[(O')\] bán kính \[O'A\]. Vị trí tương đối của hai đường tròn là:
A. Nằm ngoài nhau.
B. Cắt nhau.
C. Tiếp xúc ngoài.
D. Tiếp xúc trong.
Quảng cáo
Trả lời:

Chọn C
Vì hai đường tròn có một điểm chung là \[A\] và \[OO' = OA + O'A = R + r\] nên hai đường tròn tiếp xúc ngoài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. cắt nhau.
B. không giao nhau.
C. tiếp xúc trong.
D. tiếp xúc ngoài.
Lời giải
Chọn C
Ta có: \(R - r = 7 - 3 = 4\left( {cm} \right)\)
\[ \Rightarrow OO' = R - r\left( { = 4cm} \right)\]
Vậy hai đường tròn đã cho tiếp xúc trong.
Câu 2
A. \({90^0}\)
B. \({60^0}\)
C. \({80^0}\)
D. \({100^0}\)
Lời giải
Chọn A
Xét \(({O_1})\)có \({O_1}B = {O_1}A\)\( \Rightarrow \Delta {O_1}AB\) cân tại \({O_1} \Rightarrow \widehat {{O_1}BA} = \widehat {{O_1}AB}\).
Xét \(({O_2})\)có \({O_2}C = {O_2}A\)\( \Rightarrow \Delta {O_2}CA\) cân tại \({O_2} \Rightarrow \widehat {{O_2}CA} = \widehat {{O_2}AC}\).
Lại có: \({O_1}B//{O_2}C\)
\( \Rightarrow \widehat {{O_1}BC} + \widehat {{O_2}CB} = {180^0}\)(hai góc trong cùng phía bù nhau)
Suy ra \(\widehat {{O_1}} + \widehat {{O_2}} = {360^0} - \widehat {{O_2}CB} - \widehat {{O_2}BC} = {180^0}\)
\( \Leftrightarrow {180^0} - \widehat {{O_1}BA} - \widehat {{O_1}AB} + {180^0} - \widehat {{O_2}CA} - \widehat {{O_2}AC} = {180^0}\)
\( \Leftrightarrow 2(\widehat {{O_1}AB} + \widehat {{O_2}AC}) = {180^0}\)
\( \Rightarrow \widehat {{O_1}AB} + \widehat {{O_2}AC} = {90^0} \Rightarrow \widehat {BAC} = {90^0}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Cắt nhau.
B. Không giao nhau.
C. Tiếp xúc nhau.
D. Không xác định được.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[AB = 8,6cm\].
B. \[AB = 6,9cm\].
C. \[AB = 4,8cm\].
D. \[AB = 9,6cm\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[OO' \approx 6,5cm\].
B. \[OO' \approx 6,1cm\].
C. \[OO' \approx 6cm\].
D. \[OO' \approx 6,2cm\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(AM = \frac{{B{O_1} + C{O_2}}}{2}\)
B. \(AM \bot A{O_1};AM \bot A{O_2}\)
C. \(AM = \frac{1}{2}BC\)
D. \(AM = MC\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.