Cho tam giác \(ABC\) vuông tại \(A\)(\(AB < AC\)). Đường trung trực của \(BC\) cắt \(BC,AC,AB\) theo thứ tự ở \(E;F;G\). Vị trí tương đối của \(EA\) và đường tròn đường kính \(FG\) là:
</>
Quảng cáo
Trả lời:

Chọn C
Gọi \(I\) là trung điểm của \(GF\).
Xét tam giác \(AGF\) vuông tại \(A\) có: \(IA = IF = IG\) nên \[\widehat {IAF} = \widehat {IFA}\].
Mà \(\widehat {IFA} = \widehat {CFE}\)
Nên \(\widehat {IAF} = \widehat {CFE}\).
Xét tam giác \(ABC\) vuông tại \(A\) có: \(\widehat C = \widehat {CAE}\).
Mà \(\widehat C + \widehat {CFE} = 90^\circ \) nên \(\widehat {CAE} + \widehat {IAF} = 90^\circ \).
Hay \(EA\) là tiếp tuyến của đường tròn đường kính \(GF\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Xét \(({O_1})\)có \({O_1}B = {O_1}A\)\( \Rightarrow \Delta {O_1}AB\) cân tại \({O_1} \Rightarrow \widehat {{O_1}BA} = \widehat {{O_1}AB}\).
Xét \(({O_2})\)có \({O_2}C = {O_2}A\)\( \Rightarrow \Delta {O_2}CA\) cân tại \({O_2} \Rightarrow \widehat {{O_2}CA} = \widehat {{O_2}AC}\).
Lại có: \({O_1}B//{O_2}C\)
\( \Rightarrow \widehat {{O_1}BC} + \widehat {{O_2}CB} = {180^0}\)(hai góc trong cùng phía bù nhau)
Suy ra \(\widehat {{O_1}} + \widehat {{O_2}} = {360^0} - \widehat {{O_2}CB} - \widehat {{O_2}BC} = {180^0}\)
\( \Leftrightarrow {180^0} - \widehat {{O_1}BA} - \widehat {{O_1}AB} + {180^0} - \widehat {{O_2}CA} - \widehat {{O_2}AC} = {180^0}\)
\( \Leftrightarrow 2(\widehat {{O_1}AB} + \widehat {{O_2}AC}) = {180^0}\)
\( \Rightarrow \widehat {{O_1}AB} + \widehat {{O_2}AC} = {90^0} \Rightarrow \widehat {BAC} = {90^0}\)
Lời giải
Chọn C
Ta có: \(R - r = 7 - 3 = 4\left( {cm} \right)\)
\[ \Rightarrow OO' = R - r\left( { = 4cm} \right)\]
Vậy hai đường tròn đã cho tiếp xúc trong.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.