Cho phương trình \[2{x^2} - \left( {m + 1} \right)x + 3 = 0\](\[m\]là tham số). Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Chọn C
Phương trình có nghiệm khi \[\Delta \ge 0\] \[ \Leftrightarrow {\left( {m + 1} \right)^2} - 24 \ge 0\] \[ \Leftrightarrow {\left( {m + 1} \right)^2} \ge 24\].
Nếu phương trình có hai nghiệm thì theo định lí Viète tích hai nghiệm đó là \[\frac{3}{2} > 0\], tức là hai nghiệm đấy cùng dấu.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Phương trình \( - {x^2} + 2x + 1 = 0\) có \( = 2 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:
\({x_1}^{} + {x_2} = 2\) và \({x_1}{x_2} = - 1\)
Do vậy \(Q = {x_1}^3 + {x_2}^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {2^3} - 3\left( { - 1} \right).2 = 14\).
Lời giải
Chọn C
Phương trình \(2{x^2} - x - 2020 = 0\) có \(a.c = 2.\left( { - 2020} \right) = - 4040 < 0\)
Do đó phương trình luôn có hai nghiệm \({x_1}\), \({x_2}\).
Theo định lý Vi- ét ta có \({x_1}.\,{x_2} = \frac{{ - 2020}}{2} = - 1010\).
Gọi \(M\) và \(P\) lần lượt là điểm biểu diễn \({x_1}\) và \({x_2}\) trên \[Ox\].
Xét \[\Delta MNP\] vuông tại \[N\], \[NO \bot MP\] tại \[O\].
Áp dụng hệ thức lượng có \[O{N^2} = OM.OP = \left| {{x_1}} \right|.\left| {{x_2}} \right| = \left| {{x_1}{x_2}} \right| = \left| { - 1010} \right| = 1010\].
Vậy \[b = ON = \sqrt {1010} \].
</>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.