Quảng cáo
Trả lời:
Chọn B
Ta thấy hàm số \[y = ( - {m^2} + 4m - 5){x^2}\] có
\[a = - {m^2} + 4m - 5 = - ({m^2} - 4m + 4) - 1 = - {(m - 2)^2} - 1 \le - 1 < 0,{\mkern 1mu} {\mkern 1mu} \forall m\]
Nên đồ thị hàm số nằm phía dưới trục hoành, đồ thị nhận Oy làm trục đối xứng suy ra A,C sai.
Và đồ thị hàm số là một parabpl nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.
Suy ra A sai.
>CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Thay tọa độ điểm \[A( - 2;4)\] vào hàm số \[y = f(x) = ( - 2m + 1){x^2}\] ta được
\[( - 2m + 1).{( - 2)^2} = 4\] hay \[ - 2m + 1 = 1\] nên \[m = 0\]
Vậy \[m = 0\] là giá trị cần tìm.
Lời giải
Chọn A
Phương trình hoành độ giao điểm \[{x^2} = 5x - m - 4\] hay \[{x^2} - 5x + m + 4 = 0\] có \[\Delta = 9 - 4m\]
Để đường thẳng \[d\] cắt \((P)\) tại hai điểm phân biệt có hoành độ \[{x_1};{x_2}\] thì \[\Delta > 0\] hay \[9 - 4m > 0\] nên \[m < \frac{9}{4}\]
Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = m + 4\end{array} \right.({x_1};{x_2} \ne 0 \Rightarrow m \ne - 4)\]
Ta có \[\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 5\]
\[\frac{{{x_1}^2 + x_2^2}}{{{x_1}{x_2}}} = 5\]
\[{\left( {{x_1} + {x_2}} \right)^2} - 7{x_1}{x_2} = 0\]
\[25 - 7m - 28 = 0\]
\[m = - \frac{3}{7}(TM)\]
Vậy \[m = - \frac{3}{7}\] là giá trị cần tìm.
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.