Cho parabol \((P):y = a{x^2}(a \ne 0)\) đi qua điểm \(A( - 2;4)\) và tiếp xúc với đồ thị \((d)\) của hàm số \[y = 2(m - 1)x + (m - 1)\]. Tọa độ tiếp điểm là:
Quảng cáo
Trả lời:
Chọn C
\((P)\)đi qua điểm \(A( - 2;4)\) nên \[4 = a.{( - 2)^2} = 4a \Leftrightarrow a = 1\].
Vậy phương trình parabol \((P)\) là \[y = {x^2}\].
Để \((P)\) tiếp xúc với \((d)\) thì phương trình hoành độ giao điểm \[{x^2} - 2(m - 1)x + (m - 1) = 0\] có nghiệm kép
\[\Delta ' = {\left[ { - (m - 1)} \right]^2} - m + 1 = 0\]
\[{m^2} - 2m + 1 - m + 1 = 0\]
\[{m^2} - 3m + 2 = 0\]
\[m = 1\] hoặc \[m = 2\]
Nếu \[m = 1\] thì hoành độ giao điểm là \[x = 0\;\]. Vậy tiếp điểm \[(0;0)\]
Nếu \[m = 2\]thì hoành độ giao điểm là \[x = 1\;\]. Vậy tiếp điểm \[(1;1)\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Thay tọa độ điểm \[A( - 2;4)\] vào hàm số \[y = f(x) = ( - 2m + 1){x^2}\] ta được
\[( - 2m + 1).{( - 2)^2} = 4\] hay \[ - 2m + 1 = 1\] nên \[m = 0\]
Vậy \[m = 0\] là giá trị cần tìm.
Lời giải
Chọn A
Phương trình hoành độ giao điểm \[{x^2} = 5x - m - 4\] hay \[{x^2} - 5x + m + 4 = 0\] có \[\Delta = 9 - 4m\]
Để đường thẳng \[d\] cắt \((P)\) tại hai điểm phân biệt có hoành độ \[{x_1};{x_2}\] thì \[\Delta > 0\] hay \[9 - 4m > 0\] nên \[m < \frac{9}{4}\]
Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = m + 4\end{array} \right.({x_1};{x_2} \ne 0 \Rightarrow m \ne - 4)\]
Ta có \[\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 5\]
\[\frac{{{x_1}^2 + x_2^2}}{{{x_1}{x_2}}} = 5\]
\[{\left( {{x_1} + {x_2}} \right)^2} - 7{x_1}{x_2} = 0\]
\[25 - 7m - 28 = 0\]
\[m = - \frac{3}{7}(TM)\]
Vậy \[m = - \frac{3}{7}\] là giá trị cần tìm.
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.