Câu hỏi:

13/08/2025 5 Lưu

Theo kế hoạch, một người công nhân phải hoàn thành \(84\) sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật, nên thực tế mỗi giờ người đó đã làm được nhiều hơn \(2\) sản phẩm so với số sản phẩm phải làm trong một giờ theo kế hoạch. Vì vậy, người đó hoàn thành công việc sớm hơn dự định \(1\) giờ. Hỏi theo kế hoạch, mỗi giờ người công nhân phải làm bao nhiêu sản phẩm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Gọi \[x\] là số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo kế hoạch. \[(x \in {N^ * },x < 84)\]

Số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo thực tế \[x + 2\]

Thời gian mà công nhân hoàn thành theo kế hoạch: \[\frac{{84}}{x}(h)\]

Thời gian mà công nhân hoàn thành theo thực tế: \[\frac{{84}}{{x + 2}}(h)\]

Người công nhân đó hoàn thành công việc sớm hơn định \[1h\] nên ta có phương trình: \[\frac{{84}}{x} - \frac{{84}}{{x + 2}} = 1\] \[ \Leftrightarrow 84\left( {x + 2} \right) - 84x = x\left( {x + 2} \right) \Leftrightarrow {x^2} + 2x - 126 = 0\]

\[ \Leftrightarrow x = 12\] (nhận) hoặc \[x = - 14\] (loại)

Vậy theo kế hoạch mỗi giờ người công nhân phải làm \[12\] sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Đổi \(24\) phút \( = \frac{{24}}{{60}} = \frac{2}{5}\)

Gọi thời gian từ lúc xe máy xuất phát đến lúc gặp nhau là \(x\), \[\left( {x > \frac{2}{5}} \right)\].

\( \Rightarrow \) Thời gian ô tô đi từ Hà Nam đến lúc gặp nhau là \(x - \frac{2}{5}\).

\( \Rightarrow \) Quãng đường xe máy đi từ Hà Nội đến lúc gặp nhau là \(35x\).

Quãng đường ô tô đi từ Hà Nam đến lúc gặp nhau là \(45\left( {x - \frac{2}{5}} \right)\).

Theo bài ra ta có phương trình: \(35x + 45\left( {x - \frac{2}{5}} \right) = 90\)

\(35x + 45x - 18 = 90\)

\(80x = 108\)

\(x = \frac{{108}}{{80}} = \frac{{27}}{{20}}\)

Vậy thời gian từ lúc xe máy xuất phát đến lúc gặp nhau là \(\frac{{27}}{{20}}\) \( = 1\) giờ 21 phút.

Lời giải

Chọn B

Gọi dung tích bể chứa là \[x\left( {{{\rm{m}}^{\rm{3}}}} \right)\], \[x > 5\left( 1 \right)\].

Thời gian quy định bơm đầy bể là \[\frac{x}{5}\].

Thời gian để bơm \[\frac{1}{3}\] bể với công suất \[5{\rm{ }}{{\rm{m}}^{\rm{3}}}\] trên một giờ là \[\frac{x}{{15}}\].

Thời gian để bơm \[\frac{2}{3}\] bể còn lại với công suất tăng gấp đôi (\[10{\rm{ }}{{\rm{m}}^{\rm{3}}}\] một giờ) là \[\frac{{2x}}{{30}} = \frac{x}{{15}}\].

Do khi bơm được \[\frac{1}{3}\] bể chứa, người công nhân tăng công suất lên gấp đôi, nên bể đầy trước thời gian quy định là \[2\] giờ, ta có phương trình

\[\frac{x}{5} - \left( {\frac{x}{{15}} + \frac{x}{{15}}} \right) = 2\]

\[3x - 2x = 30\]

\[x = 30\,\,({\rm{t/m}}\,\,\left( 1 \right))\]

Vậy dung tích bể chứa là \[30{\rm{ }}{{\rm{m}}^{\rm{3}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP