Câu hỏi:

17/09/2025 29 Lưu

Cho đường tròn tâm \(O\) đường kính \(AB\). \(I\) là một điểm tùy ý nằm trên đường tròn (\(I\) khác \(A\) và \(B\)). Chọn đáp án đúng.

A. Tam giác \(IAB\) là tam giác nhọn.

B. Tam giác \(IAB\) là tam giác tù.

C. Tam giác \(IAB\) là tam giác vuông.

D. Tam giác \(IAB\) là tam giác cân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cho đường tròn tâm \(O\) đường kính \(AB\). \(I\) là một điểm tùy ý nằm trên đường tròn (\(I\) khác \(A\) và \(B\)). Chọn đáp án đúng. (ảnh 1)

Ta có \(I\) là một điểm tùy ý nằm trên đường tròn \(\left( {O\;;\;\frac{{AB}}{2}} \right)\) (\(I\) khác \(A\) và \(B\)) nên \(\widehat {AIB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Do đó tam giác \(IAB\) là tam giác vuông tại \(I\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\Delta \,ABC\) vuông tại \(A\).

B. Điểm \(B\) thuộc đường tròn đường kính \(AC\).

C. Đường tròn ngoại tiếp \(\Delta ABC\) có tâm là trung điểm cạnh \(BC\).

D. Điểm \(A\) thuộc đường tròn đường kính \(BC\).

Lời giải

Chọn B

Tam giác \(ABC\)có \(B{C^2} = {5^2} = 25\)

\(A{B^2} + A{C^2} = {3^2} + {4^2} = 25\)

Suy ra \(B{C^2} = A{B^2} + A{C^2}\)

Nên tam giác \(ABC\) vuông tại \(A\) (định lí Pythagore đảo).

Do đó tâm của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền \(BC\) và \(A\) thuộc đường tròn đường kính \(BC\).

Câu 2

A. giao điểm hai đường chéo của hình chữ nhật và cách mỗi đỉnh một khoảng bằng \(3\,{\rm{cm}}\).

B. giao điểm hai đường chéo của hình chữ nhật và cách mỗi đỉnh một khoảng bằng \(2,5\,{\rm{cm}}\).

C. giao điểm hai đường chéo của hình chữ nhật và cách mỗi đỉnh một khoảng bằng \(4\,{\rm{cm}}\).

D. giao điểm hai đường chéo của chữ nhật và cách mỗi đỉnh một khoảng bằng \(5\,{\rm{cm}}\).

Lời giải

Chọn B

Đường chéo của hình chữ nhật có kích thước là \(\sqrt {{3^2} + {4^2}} = 5\,{\rm{cm}}\);\[R = \frac{5}{2} = 2,5\,{\rm{cm}}\]

Câu 3

A. \(R = 8\sqrt 2 \,{\rm{cm}}\).

B. \(R = 4\,{\rm{cm}}\).

C. \(R = \frac{{8\sqrt 2 }}{2}\,{\rm{cm}}\).

D. \(R = \frac{{8\sqrt 3 }}{2}\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[30\,\,({\rm{cm)}}\]

B. \[10\,\,({\rm{cm)}}\].

C. \[20\,\,({\rm{cm)}}\].

D. \[15\,\,({\rm{cm)}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[6\,{\rm{c}}{{\rm{m}}^2}\].

B. \[6\sqrt 3 \,{\rm{c}}{{\rm{m}}^2}\].

C. \[3\,{\rm{c}}{{\rm{m}}^2}\].

D. \[3\sqrt 3 \,{\rm{c}}{{\rm{m}}^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{3\sqrt 3 }}{3}\,{\rm{cm}}\).

B. \(3\sqrt 3 \,{\rm{cm}}\).

C. \(\frac{{3\sqrt 3 }}{2}\,{\rm{cm}}\).

D. \(\frac{{9\sqrt 3 }}{2}\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(R = 3\sqrt 2 \,{\rm{cm}}\).

B. \(R = \frac{{3\sqrt 2 }}{2}\,{\rm{cm}}\).

C. \(R = 3\,{\rm{cm}}\).

D. \(R = \frac{{3\sqrt 3 }}{2}\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP