Cho đường tròn tâm \(O\) đường kính \(AB\). \(I\) là một điểm tùy ý nằm trên đường tròn (\(I\) khác \(A\) và \(B\)). Chọn đáp án đúng.
A. Tam giác \(IAB\) là tam giác nhọn.
B. Tam giác \(IAB\) là tam giác tù.
C. Tam giác \(IAB\) là tam giác vuông.
D. Tam giác \(IAB\) là tam giác cân.
Quảng cáo
Trả lời:
Chọn C

Ta có \(I\) là một điểm tùy ý nằm trên đường tròn \(\left( {O\;;\;\frac{{AB}}{2}} \right)\) (\(I\) khác \(A\) và \(B\)) nên \(\widehat {AIB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Do đó tam giác \(IAB\) là tam giác vuông tại \(I\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(2\sqrt 3 \,{\rm{cm}}\).
B. \(\frac{{\sqrt 3 }}{7}\,{\rm{cm}}\).
C. \(7\sqrt 3 \,{\rm{cm}}\).
D. \(\frac{{7\sqrt 3 }}{3}\,{\rm{cm}}\).
Lời giải
Chọn C
Bán kính đường tròn tâm \(O\): \(r = \frac{7}{2} = 3,5\,\left( {{\rm{cm}}} \right)\)
Độ dài cạnh \(AB\) là: \(\frac{{6r}}{{\sqrt 3 }} = \frac{{6\,\,.\,\,3,5}}{{\sqrt 3 }} = 7\sqrt 3 \,\left( {{\rm{cm}}} \right)\).
Câu 2
A. \[24\,\,({\rm{c}}{{\rm{m}}^2})\].
B. \[24\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
C. \[12\,\,({\rm{c}}{{\rm{m}}^2})\].
D. \[12\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
Lời giải
Chọn D

Tam giác \[ABC\] đều cạnh \(a\) có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{3}\).
Suy ra \(3R = a\sqrt 3 \)hay \(a = R\sqrt 3 = 4\sqrt 3 \,\,{\rm{(cm)}}\)
Mặt khác \[O\] là trọng tâm tam giác\[ABC\] và \[AH\] vừa là đường cao và đường trung tuyến xuất phát từ đỉnh \(A\). Suy ra \(R = AO = \frac{2}{3}\; \cdot \;AH\). Hay \(AH = \frac{{3R}}{2} = \frac{{3\;.\;4}}{2} = 6\,\,({\rm{cm)}}\)
Diện tích tam giác \[ABC\] là \({\rm{S = }}\frac{1}{2}\; \cdot \;AH.BC = \frac{1}{2}\; \cdot \;6.4\sqrt 3 = 12\sqrt 3 \,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Câu 3
A. \[2\,cm\].
B. \[3\,cm\].
C. \(6\,cm\).
D. \(12,5\,cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Tâm là \(A\) và bán kính \(R = a\sqrt 2 \).
B. Tâm là trung điểm cạnh huyền \(AC\) và bán kính \(R = a\sqrt 2 \).
C. Tâm là trung điểm cạnh huyền \(BC\) và bán kính \(R = \frac{{a\sqrt 2 }}{2}\).
D. Tâm là điểm \(B\) và bán kính là \(R = \frac{{a\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\Delta \,ABC\) vuông tại \(A\).
B. Điểm \(B\) thuộc đường tròn đường kính \(AC\).
C. Đường tròn ngoại tiếp \(\Delta ABC\) có tâm là trung điểm cạnh \(BC\).
D. Điểm \(A\) thuộc đường tròn đường kính \(BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[15\,\,({\rm{cm}})\].
B. \[36\,\,({\rm{cm}})\].
C. \[14,5\,\,({\rm{cm}})\].
D. \[7,5\,\,({\rm{cm}})\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[150\,m\].
B. \[300\,m\].
C. \[450\,m\].
D. \[500\,m\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
