Cho tam giác \(\Delta ABC\) có \(AB = 13\,{\rm{cm}}\); \(AC = 12\,{\rm{cm}}\); \(BC = 5\,{\rm{cm}}\). Khẳng định nào sau đây sai? Tâm của đường tròn ngoại tiếp tam giác \(ABC\) là
A. trung điểm cạnh \(AB\).
B. điểm nằm trên cạnh\(AB\)và cách \(A\) một khoảng bằng \[6,5\,{\rm{cm}}\].
C. giao ba đường trung trực của tam giác \(ABC\).
D. trung điểm cạnh \(CB\).
Quảng cáo
Trả lời:
Chọn D
Tam giác \(ABC\)có
\(A{B^2} = {13^2} = 169\)
\(A{C^2} + B{C^2} = {5^2} + {12^2} = 169\)
Suy ra \[A{B^2} = A{C^2} + B{C^2}\]
Nên tam giác \(ABC\) vuông tại \(C\) (Định lí Pythagore đảo).
Do đó tâm của đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực trong tam giác và là trung điểm của cạnh huyền \(AB\), cách \(A\) một khoảng bằng \[6,5\,{\rm{cm}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[2\,cm\].
B. \[3\,cm\].
C. \(6\,cm\).
D. \(12,5\,cm\).
Lời giải
Chọn B
![Cho \(\Delta ABC\) vuông tại \(A\) có: \[AB = 9 cm; AC = 12 cm\], bán kính đường tròn nội tiếp \(\Delta ABC\) bằng (ảnh 1)](https://video.vietjack.com/upload2/images/1755100342/1755100420-image7.png)
\(\Delta ABC\) vuông tại \(A\) có: \[AB{\rm{ }} = {\rm{ }}9{\rm{ }}cm;{\rm{ }}AC{\rm{ }} = {\rm{ }}12{\rm{ }}cm\]\( \Rightarrow BC = 15\,cm\)
\({S_{ABC}} = \frac{1}{2}AB.AC = 54\,c{m^2}\)
Lại có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.AB + \frac{1}{2}r.AC + \frac{1}{2}r.BC\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.\left( {AB + AC + BC} \right)\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.{C_{ABC}}\)
\( \Rightarrow r = \frac{{2{S_{ABC}}}}{{{C_{ABC}}}}\)
\( \Rightarrow r = \frac{{2.54}}{{9 + 12 + 15}} = \frac{{108}}{{36}} = 3\,cm\)
Câu 2
A. Tâm là \(A\) và bán kính \(R = a\sqrt 2 \).
B. Tâm là trung điểm cạnh huyền \(AC\) và bán kính \(R = a\sqrt 2 \).
C. Tâm là trung điểm cạnh huyền \(BC\) và bán kính \(R = \frac{{a\sqrt 2 }}{2}\).
D. Tâm là điểm \(B\) và bán kính là \(R = \frac{{a\sqrt 2 }}{2}\).
Lời giải
Chọn C
Xét \[\Delta ABC\] vuông tại \(A\) ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pythagore)
\[BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \]
Do đó tâm của đường tròn ngoại tiếp \[\Delta ABC\] là trung điểm của cạnh huyền \(BC\) và bán kính của đường tròn ngoại tiếp tam giác \[ABC\] là: \[R = \frac{{BC}}{2} = \frac{{a\sqrt 2 }}{2}\].
Câu 3
A. \[24\,\,({\rm{c}}{{\rm{m}}^2})\].
B. \[24\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
C. \[12\,\,({\rm{c}}{{\rm{m}}^2})\].
D. \[12\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[150\,m\].
B. \[300\,m\].
C. \[450\,m\].
D. \[500\,m\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(2\sqrt 3 \,{\rm{cm}}\).
B. \(\frac{{\sqrt 3 }}{7}\,{\rm{cm}}\).
C. \(7\sqrt 3 \,{\rm{cm}}\).
D. \(\frac{{7\sqrt 3 }}{3}\,{\rm{cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[15\,\,({\rm{cm}})\].
B. \[36\,\,({\rm{cm}})\].
C. \[14,5\,\,({\rm{cm}})\].
D. \[7,5\,\,({\rm{cm}})\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{{25\pi }}{3}\,{{\rm{m}}^2}\).
B. \(\frac{{25\sqrt 3 }}{3}\,{{\rm{m}}^2}\).
C. \(\frac{{25\pi }}{3}\,{{\rm{m}}^2}\).
D. \(\frac{{25\pi \sqrt 3 }}{9}\,{{\rm{m}}^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
