Câu hỏi:

17/09/2025 156 Lưu

Cho tam giác \(ABC\) có \(AB = 3\,{\rm{cm}}\); \(AC = 4\,{\rm{cm}}\); \(BC = 5\,{\rm{cm}}\). Chọn khẳng định sai.

A. \(\Delta \,ABC\) vuông tại \(A\).

B. Điểm \(B\) thuộc đường tròn đường kính \(AC\).

C. Đường tròn ngoại tiếp \(\Delta ABC\) có tâm là trung điểm cạnh \(BC\).

D. Điểm \(A\) thuộc đường tròn đường kính \(BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Tam giác \(ABC\)có \(B{C^2} = {5^2} = 25\)

\(A{B^2} + A{C^2} = {3^2} + {4^2} = 25\)

Suy ra \(B{C^2} = A{B^2} + A{C^2}\)

Nên tam giác \(ABC\) vuông tại \(A\) (định lí Pythagore đảo).

Do đó tâm của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền \(BC\) và \(A\) thuộc đường tròn đường kính \(BC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Cho \(\Delta ABC\) vuông tại \(A\) có: \[AB  =  9 cm; AC  =  12 cm\], bán kính đường tròn nội tiếp \(\Delta ABC\) bằng (ảnh 1)

\(\Delta ABC\) vuông tại \(A\) có: \[AB{\rm{ }} = {\rm{ }}9{\rm{ }}cm;{\rm{ }}AC{\rm{ }} = {\rm{ }}12{\rm{ }}cm\]\( \Rightarrow BC = 15\,cm\)

\({S_{ABC}} = \frac{1}{2}AB.AC = 54\,c{m^2}\)

Lại có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.AB + \frac{1}{2}r.AC + \frac{1}{2}r.BC\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.\left( {AB + AC + BC} \right)\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.{C_{ABC}}\)

\( \Rightarrow r = \frac{{2{S_{ABC}}}}{{{C_{ABC}}}}\)

\( \Rightarrow r = \frac{{2.54}}{{9 + 12 + 15}} = \frac{{108}}{{36}} = 3\,cm\)

Lời giải

Chọn B

Để khách sạn cách đều cả ba con đường thì cần phải được xây vào đúng vị trí tâm nội tiếp \(I\) của tam giác \(ABC.\)

Khi đó cho chiều cao hạ từ đỉnh \(I\) xuống các cạnh \(BC,\,\,CA,\,\,AB\) của các tam giác \(IBC,\,\,ICA,\,\,IAC\) đều bằng bán kính \(r\) của đường tròn nội tiếp tam giác \(ABC.\)

Do đó \({S_{ABC}} = {S_{IBC}} + {S_{ICA}} + {S_{IAB}}\)

\( = \frac{1}{2}r\left( {AB + AC + BC} \right) = \frac{{rc}}{2}.\)

Suy ra \(r = \frac{{2{S_{ABC}}}}{C} = 300\,\,{\rm{m}}{\rm{.}}\)

Vậy khách sạn sẽ cách mỗi con đường là 300 m.

Câu 3

A. \[24\,\,({\rm{c}}{{\rm{m}}^2})\].

B. \[24\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].

C. \[12\,\,({\rm{c}}{{\rm{m}}^2})\].

D. \[12\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Tâm là \(A\) và bán kính \(R = a\sqrt 2 \).

B. Tâm là trung điểm cạnh huyền \(AC\) và bán kính \(R = a\sqrt 2 \).

C. Tâm là trung điểm cạnh huyền \(BC\) và bán kính \(R = \frac{{a\sqrt 2 }}{2}\).

D. Tâm là điểm \(B\) và bán kính là \(R = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\sqrt 3 \,{\rm{cm}}\).

B. \(\frac{{\sqrt 3 }}{7}\,{\rm{cm}}\).

C. \(7\sqrt 3 \,{\rm{cm}}\).

D. \(\frac{{7\sqrt 3 }}{3}\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{25\pi }}{3}\,{{\rm{m}}^2}\).

B. \(\frac{{25\sqrt 3 }}{3}\,{{\rm{m}}^2}\).

C. \(\frac{{25\pi }}{3}\,{{\rm{m}}^2}\).

D. \(\frac{{25\pi \sqrt 3 }}{9}\,{{\rm{m}}^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP