Câu hỏi:

15/08/2025 14 Lưu

Tính góc giữa hai đường thẳng \(d\) và \({d^\prime }\) trong mỗi trường hợp sau:

a) \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\) và \({d^\prime }:\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{{z - 1}}{2}\);

b) d: \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{2}\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 2 - 2t}\\{y = 2 - 2t}\\{z = 1 + t}\end{array}} \right.\)

c) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y =  - 1 + 2t}\\{z =  - 2 - t}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2{t^\prime }}\\{y = 3 + 4{t^\prime }}\\{z = 10{t^\prime }.}\end{array}} \right.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(d\) và \({d^\prime }\) có vectơ chi phương lần lượt là \(\vec a = (1;2;1)\) và \({\vec a^\prime } = (1;1;2)\).

Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|1.1 + 2.1 + 1.2|}}{{\sqrt {{1^2} + {2^2} + {1^2}}  \cdot \sqrt {{1^2} + {1^2} + {2^2}} }} = \frac{5}{6}\). Suy ra d,d'33°33'.

b) \(d\) và \({d^\prime }\) có vectơ chi phương lần lượt là \(\vec a = (1;2;2)\) và \({\vec a^\prime } = ( - 2; - 2;1)\).

Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|1 \cdot ( - 2) + 2 \cdot ( - 2) + 2 \cdot 1|}}{{\sqrt {{1^2} + {2^2} + {2^2}}  \cdot \sqrt {{{( - 2)}^2} + {{( - 2)}^2} + {1^2}} }} = \frac{4}{9}\). Suy ra d,d'63°36'

c) \(d\) và \({d^\prime }\) có vectơ chi phương lần lượt là \(\vec a = (1;2; - 1)\) và \({\vec a^\prime } = (2;4;10)\).

Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|1.2 + 2.4 + ( - 1) \cdot 10|}}{{\sqrt {{1^2} + {2^2} + {{( - 1)}^2}}  \cdot \sqrt {{2^2} + {4^2} + {{10}^2}} }} = 0\). Suy ra d,d'=90°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt phẳng \((\alpha )\) và \((\beta )\) lần lượt có các vectơ pháp tuyến là \(\vec n = (2;2; - 4)\) và \(\overrightarrow {{n^\prime }}  = (1;0; - 1)\).

Ta có: \(\cos ((\alpha ),(\beta )) = \frac{{\left| {\vec n \cdot \overrightarrow {{n^\prime }} } \right|}}{{|\vec n| \cdot \left| {\overrightarrow {{n^\prime }} } \right|}} = \frac{{|2 \cdot 1 + 2 \cdot 0 + ( - 4) \cdot ( - 1)|}}{{\sqrt {{2^2} + {2^2} + {{( - 4)}^2}}  \cdot \sqrt {{1^2} + {0^2} + {{( - 1)}^2}} }} = \frac{{\sqrt {} 3}}{2}{\rm{. }}\) Vậy ((α),(β))=30°

Lời giải

a) Đường thẳng d có vectơ chỉ phương là \(\vec a = (3;1; - 2)\)

Mặt phẳng \((P)\) có vectơ pháp tuyến là \(\vec n = (6;2; - 4)\)

Khi đó \(\sin (d,(P)) = \frac{{|3 \cdot 6 + 1 \cdot 2 + ( - 2) \cdot ( - 4)|}}{{\sqrt {{3^2} + {1^2} + {{( - 2)}^2}}  \cdot \sqrt {{6^2} + {2^2} + {{( - 4)}^2}} }} = \frac{{28}}{{28}} = 1\). Suy ra (d,(P))=90°.

b) Đường thẳng d có vectơ chỉ phương là \(\vec a = (2;4;2)\)

Mặt phẳng \(({\rm{P}})\) có vectơ pháp tuyến là \(\vec n = (2;2; - 4)\)

Khi đó \(\sin (d,(P)) = \frac{{|2 \cdot 2 + 4 \cdot 2 + 2 \cdot ( - 4)|}}{{\sqrt {{2^2} + {4^2} + {2^2}}  \cdot \sqrt {{2^2} + {2^2} + {{( - 4)}^2}} }} = \frac{4}{{24}} = \frac{1}{6}\). Suy ra (d,(P))9,59°.

c) Đường thẳng d có vectơ chỉ phương là \(\vec a = (4;4;2)\)

Mặt phẳng \(({\rm{P}})\) có vectơ pháp tuyến là \(\vec n = (0;2; - 4)\)

Khi đó \(\sin (d,(P)) = \frac{{|4 \cdot 0 + 4 \cdot 2 + 2 \cdot ( - 4)|}}{{\sqrt {{4^2} + {4^2} + {2^2}}  \cdot \sqrt {{2^2} + {{( - 4)}^2}} }} = 0\). Suy ra (d,(P))=0°.