Cho mặt phẳng \((P)\) có vectơ pháp tuyến \(\vec n = (1;2;2)\) và đường thẳng \(\Delta \) có vectơ chỉ phương \(\vec u = (2;2; - 1)\). Tính sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \((P)\). Góc giữa đường thẳng \(\Delta \) và mặt phẳng \((P)\) bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?a
Cho mặt phẳng \((P)\) có vectơ pháp tuyến \(\vec n = (1;2;2)\) và đường thẳng \(\Delta \) có vectơ chỉ phương \(\vec u = (2;2; - 1)\). Tính sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \((P)\). Góc giữa đường thẳng \(\Delta \) và mặt phẳng \((P)\) bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?a
Quảng cáo
Trả lời:

Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: \(\overrightarrow {B{B^\prime }} = \overrightarrow {O{O^\prime }} = (0;0;3a)\). Suy ra \({x_{{B^\prime }}} = {x_B} = 2a\), \({y_{{B^\prime }}} = {y_B} = 0,{z_{{B^\prime }}} - 0 = 3a\), tức là \({B^\prime }(2a;0;3a)\).
b) Vì \(B(2a;0;0),C(0;a;0),{O^\prime }(0;0;3a)\) nên mặt phẳng \(\left( {{O^\prime }BC} \right)\) có phương trình là
\(\frac{x}{{2a}} + \frac{y}{a} + \frac{z}{{3a}} = 1 \Leftrightarrow 3x + 6y + 2z - 6a = 0.\)
c) Mặt phẳng \(\left( {{O^\prime }BC} \right)\) có một vectơ pháp tuyến là \(\vec n = (3;6;2)\).
Do \({B^\prime }(2a;0;3a),C(0;a;0)\) nên \(\overrightarrow {{B^\prime }C} = ( - 2a;a; - 3a)\), suy ra vectơ \(\overrightarrow {{B^\prime }C} = ( - 2a;a; - 3a)\) cùng phương với vectơ \(\vec u = ( - 2;1; - 3)\). Vì thế vectơ \(\vec u = ( - 2;1; - 3)\) là một vectơ chỉ phương của đường thẳng \({B^\prime }C\). Suy ra sin của góc giữa đường thẳng \({B^\prime }C\) và mặt phẳng \(\left( {{O^\prime }BC} \right)\) bằng:
\(\frac{{|3 \cdot ( - 2) + 6 \cdot 1 + 2 \cdot ( - 3)|}}{{\sqrt {{3^2} + {6^2} + {2^2}} \cdot \sqrt {{{( - 2)}^2} + {1^2} + {{( - 3)}^2}} }} = \frac{6}{{7\sqrt {14} }} = \frac{{3\sqrt {14} }}{{49}}{\rm{. }}\)
Lời giải
a) Ta có: \(\overrightarrow {SA} = \left( {\frac{a}{2};0; - \frac{{a\sqrt 3 }}{2}} \right),\overrightarrow {CD} = (a;0;0)\).
Các vectơ \(\overrightarrow {SA} ,\overrightarrow {CD} \) lần lượt là vectơ chí phương của hai đường thắng SA và CD nên
b) Ta có .
Xét vectoKhi đó, \(\vec n\) là một vectơ pháp tuyến của mặt phẳng (SAC).
Đường thẳng SD có vectơ chỉ phương là \(\overrightarrow {SD} = \left( {\frac{a}{2};a; - \frac{{a\sqrt 3 }}{2}} \right)\).
Suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.