Câu hỏi:

16/08/2025 345 Lưu

Cho ba số tự nhiên liên tiếp. Biết rằng tích của hai số sau lớn hơn tích của hai số đầu là 30. Hỏi số lớn nhất bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án: 16

Gọi số tự nhiên nhỏ nhất thỏa mãn là \(x{\rm{ }}\left( {x \in \mathbb{N}} \right)\).

Vì đây là ba số tự nhiên liên tiếp nên ta có: \(x;x + 1;x + 2{\rm{ }}\left( {x \in \mathbb{N}} \right)\).

Vì tích của hai số sau lớn hơn tích của hai số trước là 30 nên \(\left( {x + 1} \right)\left( {x + 2} \right) - x\left( {x + 1} \right) = 30\).

Suy ra \({x^2} + 3x + 2 - {x^2} - x = 30\)

\(2x + 2 = 30\)

\(2x = 28\)

\(x = 14\) (thỏa mãn).

Vậy số lớn nhất là 14 + 2 = 16.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng

Diện tích mảnh đất hình vuông đó là \(x.x = {x^2}{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

b) Đúng

Chiều dài phần đất trồng hoa là \(x - 6{\rm{ }}\left( {\rm{m}} \right).\)

Chiều rộng phần đất trồng hoa là \(x - 10{\rm{ }}\left( {\rm{m}} \right).\)

Biểu thức biểu diễn diện tích phần đất trồng hoa là \(\left( {x - 6} \right)\left( {x - 10} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

c) Sai

Vì diện tích của phần đất trồng hoa bằng \(60{\rm{ }}\left( {{{\rm{m}}^2}} \right)\) nên ta có:

\(\left( {x - 6} \right)\left( {x - 10} \right) = 60\)

Suy ra \({x^2} - 16x + 60 = 60\)

Hay \({x^2} - 16x = 0\)

Do đó, \(x\left( {x - 16} \right) = 0\)

Suy ra \(x = 0\) hoặc \(x = 16\).

Mà độ dài cạnh của mảnh đất lớn hơn 0 nên Độ dài cạnh của mảnh đất hình vuông đó là \({\rm{16 }}\left( {\rm{m}} \right).\)

d) Đúng

Diện tích còn lại của mảnh đất là: \({16^2} - 60 = 256 - 60 = 196{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).