Phân tích đa thức \({x^2} - 6x + 8\) thành nhân tử, ta được:
A. \(\left( {x - 4} \right)\left( {2 - x} \right).\)
B. \(\left( {x - 4} \right)\left( {x + 2} \right).\)
C. \(\left( {x - 4} \right)\left( {x - 2} \right).\)
D. \(\left( {x + 4} \right)\left( {x - 4} \right).\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \({x^2} - 6x + 8 = {x^2} - 2x - 4x + 8 = x\left( {x - 2} \right) - 4\left( {x - 2} \right) = \left( {x - 2} \right)\left( {x - 4} \right)\).
Do đó, chọn đáp án C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đúng
Số tiền lãi trong năm thứ nhất của bác An là \(400.x\% = 400 \cdot \frac{x}{{100}} = 4x\) (triệu đồng).
Sau năm thứ nhất số tiền cả vốn và lãi của bác An là \(400 + 4x\) (triệu đồng).
b) Đúng
Số tiền lãi trong năm thứ hai của bác An là:
\(\left( {400 + 4x} \right).x\% = \left( {400 + 4x} \right).\frac{x}{{100}} = 4x + \frac{{{x^2}}}{{25}}\) (triệu đồng).
Sau năm thứ hai số tiền lãi và vốn của bác An là: \(4x + \frac{{{x^2}}}{{25}} + 400 + 4x = \frac{{{x^2}}}{{25}} + 8x + 400\) (triệu đồng).
c) Đúng
Sau hai năm gửi tiết kiệm bác An nhận số tiền gồm cả gốc lần lãi là 449,44 triệu đồng nên ta có:
\(\frac{{{x^2}}}{{25}} + 8x + 400 = 449,44\) (triệu đồng)
d) Sai
Giải phương trình, ta có: \(\frac{{{x^2}}}{{25}} + 8x + 400 = 449,44\) (triệu đồng)
\(\frac{{{x^2}}}{{25}} + 8x - 49,44 = 0\)
\({x^2} + 200x - 1236 = 0\)
\({x^2} - 6x + 206x - 1236 = 0\)
\(x\left( {x - 6} \right) + 206\left( {x - 6} \right) = 0\)
\(\left( {x - 6} \right)\left( {x + 206} \right) = 0\)
Do đó, suy ra \(x = 6\) (thỏa mãn) hoặc \(x = - 206\) (loại)
Vậy lãi suất cố định mà bác An gửi là 6%.
Lời giải
Lời giải
a) Đúng
Chiều rộng của thửa ruộng hình chữ nhật này là \(\frac{1}{2}.20 = 10\) (m).
Diện tích của thửa ruộng hình chữ nhật đó là: \(10 \cdot 20 = 200\) (m2).
b) Đúng
Chiều dài của thửa ruộng sau khi giảm \(x{\rm{ }}\left( {\rm{m}} \right)\) là \(20 - x{\rm{ }}\left( {\rm{m}} \right)\).
Chiều rộng của thửa ruộng sau khi tăng \(x{\rm{ }}\left( {\rm{m}} \right)\) là \(10 + x{\rm{ }}\left( {\rm{m}} \right)\).
Do đó, diện tích của thửa ruộng sau khi thay đổi chiều dài, chiều rộng là \(\left( {20 - x} \right)\left( {10 + x} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
c) Đúng
Nhận thấy, \(S = \left( {20 - x} \right)\left( {10 + x} \right) = - {x^2} + 10x + 200 = - {\left( {x - 5} \right)^2} + 225\).
Nhận thấy \( - {\left( {x - 5} \right)^2} + 225 \le 225\) với mọi \(x\) hay giá trị lớn nhất của \(S = 225{\rm{ }}\left( {{{\rm{m}}^2}} \right)\)
d) Sai
Từ trên, nhận thấy diện tích thửa ruộng đạt giá trị lớn nhất bằng \(225{\rm{ }}\left( {{{\rm{m}}^2}} \right)\) khi \( - {\left( {x - 5} \right)^2} = 0\).
Suy ra \(x = 5.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {x - 4} \right)\left( {x - 3} \right).\)
B. \(\left( {x - 4} \right)\left( {x - 5} \right).\)
C. \(\left( {x + 4} \right)\left( {x + 3} \right).\)
D. \(\left( {x + 4} \right)\left( {x - 4} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


