Câu hỏi:

16/08/2025 17 Lưu

Chọn khẳng định đúng trong các khẳng định dưới đây:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét các đáp án, ta có:

\(27 + 27x + 9{x^2} + {x^3} = {3^3} + 3 \cdot {3^2} \cdot x + 3 \cdot 3 \cdot {x^2} + {x^3} = {\left( {3 + x} \right)^3}.\) Do đó, đáp án A là đúng.

\({x^3} - 3{x^2} + 3x - 1 = {\left( {x - 1} \right)^3}.\) Do đó, đáp án B là sai.

\(1 - 2y + {y^2} = {\left( {y - 1} \right)^2}.\) Do đó, đáp án C là sai.

\(1 - {x^2}{y^4} = \left( {1 - x{y^2}} \right)\left( {x + x{y^2}} \right).\) Do đó, đáp án D là sai.

Vậy chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng

Số tiền lãi trong năm thứ nhất của bác An là \(400.x\% = 400 \cdot \frac{x}{{100}} = 4x\) (triệu đồng).

Sau năm thứ nhất số tiền cả vốn và lãi của bác An là \(400 + 4x\) (triệu đồng).

b) Đúng

Số tiền lãi trong năm thứ hai của bác An là:

\(\left( {400 + 4x} \right).x\% = \left( {400 + 4x} \right).\frac{x}{{100}} = 4x + \frac{{{x^2}}}{{25}}\) (triệu đồng).

Sau năm thứ hai số tiền lãi và vốn của bác An là: \(4x + \frac{{{x^2}}}{{25}} + 400 + 4x = \frac{{{x^2}}}{{25}} + 8x + 400\) (triệu đồng).

c) Đúng

Sau hai năm gửi tiết kiệm bác An nhận số tiền gồm cả gốc lần lãi là 449,44 triệu đồng nên ta có:

\(\frac{{{x^2}}}{{25}} + 8x + 400 = 449,44\) (triệu đồng)

d) Sai

Giải phương trình, ta có: \(\frac{{{x^2}}}{{25}} + 8x + 400 = 449,44\) (triệu đồng)

\(\frac{{{x^2}}}{{25}} + 8x - 49,44 = 0\)

\({x^2} + 200x - 1236 = 0\)

\({x^2} - 6x + 206x - 1236 = 0\)

\(x\left( {x - 6} \right) + 206\left( {x - 6} \right) = 0\)

\(\left( {x - 6} \right)\left( {x + 206} \right) = 0\)

Do đó, suy ra \(x = 6\) (thỏa mãn) hoặc \(x = - 206\) (loại)

Vậy lãi suất cố định mà bác An gửi là 6%.

Lời giải

Lời giải

a) Đúng

Vì độ dài đoạn dây lớn và nhỏ được cắt ra lần lượt là \(4x\) và \(4y\) \(\left( {x,y \in {\mathbb{N}^*},{\rm{ cm}}} \right)\) thì cạnh mỗi hình vuông lớn và nhỏ có độ dài lần lượt là \(x\) và \(y\) (cm).

Vì \(4x + 4y = 200\) nên \(x + y = 50\) (cm).

Do đó, tổng độ dài hai cạnh hình vuông lớn và nhỏ là 50 cm.

b) Đúng

Diện tích phần nằm giữa hai hình vuông là: \(S = {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) = 50\left( {x - y} \right){\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

c) Đúng

Để diện tích phần nằm giữa hai hình vuông lớn nhất thì \(\left( {x - y} \right)\) phải đạt giá trị lớn nhất.

Mà \(x + y = 50\), khi đó \(x = 49{\rm{ cm}},y = 1{\rm{ cm}}{\rm{.}}\)

d) Đúng

Để diện tích phần nằm giữa hai hình vuông lớn nhất thì cắt sợi dây có độ dài thành hai đoạn 196 cm và 4 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP