Câu hỏi:

19/08/2025 46 Lưu

Trong không gian \[Oxyz\], cho mặt phẳng \[(P)\]có phương trình \[x - 2y + 2z - 5 = 0\]. Xét mặt phẳng \[(Q):x + (2m - 1)z + 7 = 0\], với \[m\]là tham số thực. Tìm tất cả giá trị của \[m\] để \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \[\left[ \begin{array}{l}m = 1\\m = 4\end{array} \right.\]

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là\[\overrightarrow {{n_p}}  = \left( {1; - 2;2} \right)\], \[\overrightarrow {{n_Q}}  = \left( {1;0;2m - 1} \right)\]

Vì \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\] nên 

cosπ4=cosnp;nQ12=1+2(2m1)3.1+(2m1)2                                           24m12=94m24m+2                                           4m220m+16=0                                           m=1m=4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\cos \varphi  = \frac{{7\sqrt 3 }}{{24}}\)
Media VietJack

Ta chọn hệ trục tọa độ \(Oxyz\) với \(O \equiv A\) như hình vẽ, chọn \(a = 1\) đơn vị, khi đó ta có tọa độ điểm \(B\left( {1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\) suy ra trung điểm của \(BC\) là \(H\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\), vì \(H\) là hình chiếu của \(A'\) nên suy ra tọa độ của \(A'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta tìm tọa độ \(B'\), gọi tọa độ \(B'\left( {x;y;z} \right)\) khi đó ta có \(\overrightarrow {A'B'}  = \overrightarrow {OB} \) nên tọa độ \(B'\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta cũng có \(\overrightarrow {B'C}  = \left( { - \frac{3}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\) và \(\overrightarrow {A'B}  = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\). Từ đó ta có \(\cos \varphi  = \frac{{\left| {\overrightarrow {A'B} .\overrightarrow {B'C} } \right|}}{{\left| {\overrightarrow {A'B} } \right|.\left| {\overrightarrow {B'C} } \right|}}\) \( = \frac{7}{{2.\sqrt 6 .\sqrt 8 }} = \frac{{7\sqrt 3 }}{{24}}\).

Lời giải

Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)

Giao điểm  của \({d_1}\)  và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z =  - 1\\x - 2y = 3\\x - 2z =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP