Trong không gian \[Oxyz\], cho mặt phẳng \[(P)\]có phương trình \[x - 2y + 2z - 5 = 0\]. Xét mặt phẳng \[(Q):x + (2m - 1)z + 7 = 0\], với \[m\]là tham số thực. Tìm tất cả giá trị của \[m\] để \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\].
Trong không gian \[Oxyz\], cho mặt phẳng \[(P)\]có phương trình \[x - 2y + 2z - 5 = 0\]. Xét mặt phẳng \[(Q):x + (2m - 1)z + 7 = 0\], với \[m\]là tham số thực. Tìm tất cả giá trị của \[m\] để \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\].
Quảng cáo
Trả lời:
Đáp án: \[\left[ \begin{array}{l}m = 1\\m = 4\end{array} \right.\]
Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là\[\overrightarrow {{n_p}} = \left( {1; - 2;2} \right)\], \[\overrightarrow {{n_Q}} = \left( {1;0;2m - 1} \right)\]
Vì \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\] nên
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 45o
\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH} = \left( {2;1;2} \right)\]làm VTPT
\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n = \left( {1;1;0} \right)\]
Ta cóLời giải
Đáp án:
Ta có
Mặt phẳng có một véctơ pháp tuyến là
Đường thẳng vuông góc với mặt phẳng có một véctơ chỉ phương là .
Đường thẳng đi qua B và vuông góc với mặt phẳng (BCD) có phương trình là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.